Skip to main content
Top
Published in: International Urology and Nephrology 6/2019

01-06-2019 | Nephrology - Original Paper

Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells

Authors: Zhongxin Li, Jingjing Zhou, Yan Li, Fan Yang, Xiaoying Lian, Wenhu Liu

Published in: International Urology and Nephrology | Issue 6/2019

Login to get access

Abstract

Purpose

Previous studies indicate that autosomal dominant polycystic kidney disease (ADPKD) cells exhibited dysregulated calcium homeostasis and enhanced cell proliferation. TRPC3 has been shown to function in the modulation of calcium and sodium entry, but whether TRPC3 plays a role in cellular abnormalities of ADPKD cells has not been defined.

Methods

Human conditionally immortalized proximal tubular epithelial cells and mouse IMCD3 cells were used with polycystin-2 (PC2, TRPP2) knockdown. Cell proliferation assay was used to detect the cell proliferations upon different treatments. QRT-PCR and western blotting were used to measure the expression profiles of TRPP2 and other proteins. High-resolution respirometry, enzymic activities and ROS levels were detected to reflect the mitochondrial functions. Calcium and sodium uptakes were measured using Fura2-AM and SBFI dyes.

Results

We showed that PC2 knockdown promoted cell proliferation, ROS productions and ERK phosphorylation, compared with negative control. Meanwhile, we demonstrated that receptor-operated calcium entry (ROCE) exhibited less reductions compared with store-operated calcium entry (SOCE) upon PC2 knockdown. Inhibition of ROCE and SOCE by specific inhibitors partially reversed the enhanced cell proliferation, ROS productions and ERK phosphorylation induced by PC2 knockdown. Moreover, TRPC3 upregulation was observed upon PC2 knockdown, which acted as both SOC and ROC, promoting cation entry, cell proliferation and ERK phosphorylation. Furthermore, we showed that mitochondrial located TRPC3 was upregulated and modulating mitochondrial calcium uptake, thus promoting the ROS productions in the presence of PC2 knockdown.

Conclusions

We demonstrated that TRPC3 upregulation upon PC2 knockdown aggravated the mitochondrial abnormalities and cell proliferation by modulating mitochondrial calcium uptake. Targeting TRPC3 might be a promising target for ADPKD treatment.
Literature
1.
go back to reference Harris PC (2002) Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens 11(3):309–314CrossRefPubMed Harris PC (2002) Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens 11(3):309–314CrossRefPubMed
2.
go back to reference Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei Y, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC, Conference P (2015) Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int 88(1):17–27. https://doi.org/10.1038/ki.2015.59 CrossRefPubMedPubMedCentral Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei Y, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC, Conference P (2015) Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int 88(1):17–27. https://​doi.​org/​10.​1038/​ki.​2015.​59 CrossRefPubMedPubMedCentral
3.
go back to reference Hateboer N, Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107CrossRefPubMed Hateboer N, Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107CrossRefPubMed
14.
19.
21.
27.
go back to reference Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X, Aboudehen K, Zhang S, Kersjes K, Galasso R, Li J, Kaimal V, Lockton S, Davis S, Flaten A, Johnson JA, Holland WL, Kusminski CM, Scherer PE, Harris PC, Trudel M, Wallace DP, Igarashi P, Lee EC, Androsavich JR, Patel V (2017) microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8:14395. https://doi.org/10.1038/ncomms14395 CrossRefPubMedPubMedCentral Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X, Aboudehen K, Zhang S, Kersjes K, Galasso R, Li J, Kaimal V, Lockton S, Davis S, Flaten A, Johnson JA, Holland WL, Kusminski CM, Scherer PE, Harris PC, Trudel M, Wallace DP, Igarashi P, Lee EC, Androsavich JR, Patel V (2017) microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8:14395. https://​doi.​org/​10.​1038/​ncomms14395 CrossRefPubMedPubMedCentral
30.
go back to reference Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, Baban D, Nye E, Stamp GW, Wolhuter K, Stevens M, Fischer R, Carmeliet P, Maxwell PH, Pugh CW, Frizzell N, Soga T, Kessler BM, El-Bahrawy M, Ratcliffe PJ, Pollard PJ (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537. https://doi.org/10.1016/j.ccr.2011.09.006 CrossRefPubMedPubMedCentral Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, Baban D, Nye E, Stamp GW, Wolhuter K, Stevens M, Fischer R, Carmeliet P, Maxwell PH, Pugh CW, Frizzell N, Soga T, Kessler BM, El-Bahrawy M, Ratcliffe PJ, Pollard PJ (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537. https://​doi.​org/​10.​1016/​j.​ccr.​2011.​09.​006 CrossRefPubMedPubMedCentral
32.
go back to reference Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106(13):5400–5405. https://doi.org/10.1073/pnas.0808793106 CrossRefPubMed Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106(13):5400–5405. https://​doi.​org/​10.​1073/​pnas.​0808793106 CrossRefPubMed
37.
go back to reference Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108(26):10556–10561. https://doi.org/10.1073/pnas.1106183108 CrossRefPubMed Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108(26):10556–10561. https://​doi.​org/​10.​1073/​pnas.​1106183108 CrossRefPubMed
Metadata
Title
Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells
Authors
Zhongxin Li
Jingjing Zhou
Yan Li
Fan Yang
Xiaoying Lian
Wenhu Liu
Publication date
01-06-2019
Publisher
Springer Netherlands
Published in
International Urology and Nephrology / Issue 6/2019
Print ISSN: 0301-1623
Electronic ISSN: 1573-2584
DOI
https://doi.org/10.1007/s11255-019-02149-7

Other articles of this Issue 6/2019

International Urology and Nephrology 6/2019 Go to the issue