Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 3/2021

01-10-2021 | Tachyarrythmia

Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series

Author: Richard C. Becker

Published in: Journal of Thrombosis and Thrombolysis | Issue 3/2021

Login to get access

Abstract

The autonomic nervous system (ANS) is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common observation among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] in the acute and chronic phases of the disease is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Because abnormalities in the ANS can contribute to each of these symptoms, herein a review of autonomic dysfunction in SARS-COV-2 infection is provided to guide diagnostic testing, patient care and research initiatives.

Graphic abstract

The autonomic nervous system is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common collection of signs and symptoms among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Abnormalities in the autonomic nervous system (ANS) can contribute to each of these identifiers, potentially offering a unifying pathobiology for acute, subacute and the long-term sequelae of SARS-CoV-2 infection (PASC) and a target for intervention.
Literature
2.
4.
go back to reference Koopman FA et al (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentralCrossRef Koopman FA et al (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentralCrossRef
5.
go back to reference Armour JA et al (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247(2):289–298PubMedCrossRef Armour JA et al (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247(2):289–298PubMedCrossRef
7.
8.
go back to reference Reisert M, Weiller C, Hosp JA (2021) Displaying the autonomic processing network in humans—a global tractography approach. Neuroimage 231:117852PubMedCrossRef Reisert M, Weiller C, Hosp JA (2021) Displaying the autonomic processing network in humans—a global tractography approach. Neuroimage 231:117852PubMedCrossRef
9.
10.
go back to reference Isaacson SH et al (2021) Management strategies for comorbid supine hypertension in patients with neurogenic orthostatic hypotension. Curr Neurol Neurosci Rep 21(4):18PubMedPubMedCentralCrossRef Isaacson SH et al (2021) Management strategies for comorbid supine hypertension in patients with neurogenic orthostatic hypotension. Curr Neurol Neurosci Rep 21(4):18PubMedPubMedCentralCrossRef
11.
go back to reference Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50:499–511PubMedCrossRef Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50:499–511PubMedCrossRef
12.
go back to reference Robles-Cabrera A et al (2014) The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure. Rev Neurol 59(11):508–516PubMed Robles-Cabrera A et al (2014) The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure. Rev Neurol 59(11):508–516PubMed
13.
14.
go back to reference Mortara A et al (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10):3450–3458PubMedCrossRef Mortara A et al (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10):3450–3458PubMedCrossRef
19.
go back to reference O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46(1):200–204PubMedCrossRef O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46(1):200–204PubMedCrossRef
20.
21.
go back to reference Bohannon DG, Long D, Kim WK (2021) Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells 10(4):890PubMedPubMedCentralCrossRef Bohannon DG, Long D, Kim WK (2021) Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells 10(4):890PubMedPubMedCentralCrossRef
22.
23.
go back to reference Dore-Duffy P et al (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef Dore-Duffy P et al (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef
25.
go back to reference Muus C et al (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27(3):546–559PubMedCrossRef Muus C et al (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27(3):546–559PubMedCrossRef
26.
go back to reference Behrens R et al (2021) Mini review: central organization of airway afferent nerve circuits. Neurosci Lett 744:135604PubMedCrossRef Behrens R et al (2021) Mini review: central organization of airway afferent nerve circuits. Neurosci Lett 744:135604PubMedCrossRef
27.
go back to reference Driessen AK et al (2018) Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 223(9):4005–4022PubMedCrossRef Driessen AK et al (2018) Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 223(9):4005–4022PubMedCrossRef
29.
go back to reference Tang LYW et al (2021) Autonomic alterations after pulmonary vein isolation in the CIRCA-DOSE (cryoballoon vs irrigated radiofrequency catheter ablation) study. J Am Heart Assoc 10(5):18610CrossRef Tang LYW et al (2021) Autonomic alterations after pulmonary vein isolation in the CIRCA-DOSE (cryoballoon vs irrigated radiofrequency catheter ablation) study. J Am Heart Assoc 10(5):18610CrossRef
30.
31.
go back to reference Constantine A, Dimopoulos K (2021) Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc Med 31(4):252–260PubMedCrossRef Constantine A, Dimopoulos K (2021) Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc Med 31(4):252–260PubMedCrossRef
32.
go back to reference Perros F et al (2015) Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol 65(7):668–680PubMedCrossRef Perros F et al (2015) Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol 65(7):668–680PubMedCrossRef
33.
go back to reference Tantucci C et al (2021) Respiratory function, autonomic dysfunction, and systemic inflammation are closely linked in patients with COPD and tidal flow limitation: An exploratory study. Respir Physiol Neurobiol 284:103565PubMedCrossRef Tantucci C et al (2021) Respiratory function, autonomic dysfunction, and systemic inflammation are closely linked in patients with COPD and tidal flow limitation: An exploratory study. Respir Physiol Neurobiol 284:103565PubMedCrossRef
34.
go back to reference Heindl S et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164(4):597–601PubMedCrossRef Heindl S et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164(4):597–601PubMedCrossRef
35.
go back to reference Guardiola J, Saad M, Yu J (2019) Hypertonic saline stimulates vagal afferents that respond to lung deflation. Am J Physiol 317(6):R814–R817 Guardiola J, Saad M, Yu J (2019) Hypertonic saline stimulates vagal afferents that respond to lung deflation. Am J Physiol 317(6):R814–R817
36.
go back to reference Koike H (2015) Acute sensory neuropathies and acute autonomic neuropathies. Brain Nerve 67(11):1377–1387PubMed Koike H (2015) Acute sensory neuropathies and acute autonomic neuropathies. Brain Nerve 67(11):1377–1387PubMed
38.
go back to reference Reilly CC et al (2020) Breathlessness and dysfunctional breathing in patients with postural orthostatic tachycardia syndrome (POTS): the impact of a physiotherapy intervention. Auton Neurosci 223:102601PubMedCrossRef Reilly CC et al (2020) Breathlessness and dysfunctional breathing in patients with postural orthostatic tachycardia syndrome (POTS): the impact of a physiotherapy intervention. Auton Neurosci 223:102601PubMedCrossRef
40.
go back to reference Cherneva RV, Denchev SV, Cherneva ZV (2020) The link between dynamic hyperinflation, autonomic dysfunction and exercise testing parameters with masked heart failure in patients with non-severe obstructive pulmonary disease. J Basic Clin Physiol Pharmacol 32(3):179–188PubMedCrossRef Cherneva RV, Denchev SV, Cherneva ZV (2020) The link between dynamic hyperinflation, autonomic dysfunction and exercise testing parameters with masked heart failure in patients with non-severe obstructive pulmonary disease. J Basic Clin Physiol Pharmacol 32(3):179–188PubMedCrossRef
41.
go back to reference Cerri M, Amici R (2021) Thermoregulation and sleep: functional interaction and central nervous control. Compr Physiol 11(2):1591–1604PubMedCrossRef Cerri M, Amici R (2021) Thermoregulation and sleep: functional interaction and central nervous control. Compr Physiol 11(2):1591–1604PubMedCrossRef
42.
go back to reference Liang J et al (2018) The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages. Sleep Breath 22(4):1161–1168PubMedCrossRef Liang J et al (2018) The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages. Sleep Breath 22(4):1161–1168PubMedCrossRef
43.
go back to reference Monti A et al (2002) Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol 87(2):174–181PubMedCrossRef Monti A et al (2002) Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol 87(2):174–181PubMedCrossRef
44.
go back to reference Kai S et al (2021) Cardiac autonomic nervous system activity during slow breathing in supine position. Rehabil Res Pract 2021:6619571PubMedPubMedCentral Kai S et al (2021) Cardiac autonomic nervous system activity during slow breathing in supine position. Rehabil Res Pract 2021:6619571PubMedPubMedCentral
45.
go back to reference Kai S et al (2016) Effectiveness of moderate intensity interval training as an index of autonomic nervous activity. Rehabil Res Pract 2016:6209671PubMedPubMedCentral Kai S et al (2016) Effectiveness of moderate intensity interval training as an index of autonomic nervous activity. Rehabil Res Pract 2016:6209671PubMedPubMedCentral
47.
go back to reference Stockelman KA et al (2021) Regular aerobic exercise counteracts endothelial vasomotor dysfunction associated with insufficient sleep. Am J Physiol Heart Circ Physiol 320(3):H1080-h1088PubMedCrossRefPubMedCentral Stockelman KA et al (2021) Regular aerobic exercise counteracts endothelial vasomotor dysfunction associated with insufficient sleep. Am J Physiol Heart Circ Physiol 320(3):H1080-h1088PubMedCrossRefPubMedCentral
48.
go back to reference Wirth KJ, Scheibenbogen C (2021) Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 19(1):162PubMedPubMedCentralCrossRef Wirth KJ, Scheibenbogen C (2021) Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 19(1):162PubMedPubMedCentralCrossRef
49.
go back to reference Stute NL, Koopmans PJ (2021) Pushing the needle forward on the relationship between autoimmunity and autonomic dysfunction. J Physiol 599(4):1039–1040PubMedCrossRef Stute NL, Koopmans PJ (2021) Pushing the needle forward on the relationship between autoimmunity and autonomic dysfunction. J Physiol 599(4):1039–1040PubMedCrossRef
51.
go back to reference Porges WL et al (2000) Heart-lung interactions: the sigh and autonomic control in the bronchial and coronary circulations. Clin Exp Pharmacol Physiol 27(12):1022–1027PubMedCrossRef Porges WL et al (2000) Heart-lung interactions: the sigh and autonomic control in the bronchial and coronary circulations. Clin Exp Pharmacol Physiol 27(12):1022–1027PubMedCrossRef
52.
go back to reference Bowes G et al (1983) Carotid chemoreceptor regulation of expiratory duration. J Appl Physiol Respir Environ Exerc Physiol 54(5):1195–1201PubMed Bowes G et al (1983) Carotid chemoreceptor regulation of expiratory duration. J Appl Physiol Respir Environ Exerc Physiol 54(5):1195–1201PubMed
53.
go back to reference Wilhelm FH, Trabert W, Roth WT (2001) Physiologic instability in panic disorder and generalized anxiety disorder. Biol Psychiatry 49(7):596–605PubMedCrossRef Wilhelm FH, Trabert W, Roth WT (2001) Physiologic instability in panic disorder and generalized anxiety disorder. Biol Psychiatry 49(7):596–605PubMedCrossRef
54.
go back to reference Boulding R et al (2016) Dysfunctional breathing: a review of the literature and proposal for classification. Eur Respir Rev 25(141):287–294PubMedCrossRef Boulding R et al (2016) Dysfunctional breathing: a review of the literature and proposal for classification. Eur Respir Rev 25(141):287–294PubMedCrossRef
55.
go back to reference Courtney R et al (2011) Medically unexplained dyspnea: partly moderated by dysfunctional (thoracic dominant) breathing pattern. J Asthma 48(3):259–265PubMedCrossRef Courtney R et al (2011) Medically unexplained dyspnea: partly moderated by dysfunctional (thoracic dominant) breathing pattern. J Asthma 48(3):259–265PubMedCrossRef
57.
go back to reference Bajić D, Đajić V, Milovanović B (2021) Entropy analysis of COVID-19 cardiovascular signals. Entropy (Basel) 23(1):87CrossRef Bajić D, Đajić V, Milovanović B (2021) Entropy analysis of COVID-19 cardiovascular signals. Entropy (Basel) 23(1):87CrossRef
59.
go back to reference Denis F et al (2021) A self-assessment web-based app to assess trends of the COVID-19 pandemic in France: observational study. J Med Internet Res 23(3):e26182PubMedPubMedCentralCrossRef Denis F et al (2021) A self-assessment web-based app to assess trends of the COVID-19 pandemic in France: observational study. J Med Internet Res 23(3):e26182PubMedPubMedCentralCrossRef
60.
go back to reference Quer G et al (2021) Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat Med 27(1):73–77PubMedCrossRef Quer G et al (2021) Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat Med 27(1):73–77PubMedCrossRef
61.
go back to reference Zens M et al (2020) App-based tracking of self-reported COVID-19 symptoms: analysis of questionnaire data. J Med Internet Res 22(9):21956CrossRef Zens M et al (2020) App-based tracking of self-reported COVID-19 symptoms: analysis of questionnaire data. J Med Internet Res 22(9):21956CrossRef
62.
go back to reference Johansson M et al (2021) Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep 3(4):573–580PubMedPubMedCentralCrossRef Johansson M et al (2021) Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep 3(4):573–580PubMedPubMedCentralCrossRef
65.
go back to reference Su XW et al (2020) SARS-CoV-2-associated Guillain–Barré syndrome with dysautonomia. Muscle Nerve 62(2):E48-e49PubMedCrossRef Su XW et al (2020) SARS-CoV-2-associated Guillain–Barré syndrome with dysautonomia. Muscle Nerve 62(2):E48-e49PubMedCrossRef
68.
go back to reference Raj SR et al (2009) Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120(9):725–734PubMedPubMedCentralCrossRef Raj SR et al (2009) Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120(9):725–734PubMedPubMedCentralCrossRef
69.
70.
go back to reference Baruscotti M et al (2016) Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If “funny” current. J Interv Card Electrophysiol 46(1):19–28PubMedCrossRef Baruscotti M et al (2016) Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If “funny” current. J Interv Card Electrophysiol 46(1):19–28PubMedCrossRef
71.
go back to reference Calò L et al (2010) Efficacy of ivabradine administration in patients affected by inappropriate sinus tachycardia. Heart Rhythm 7(9):1318–1323PubMedCrossRef Calò L et al (2010) Efficacy of ivabradine administration in patients affected by inappropriate sinus tachycardia. Heart Rhythm 7(9):1318–1323PubMedCrossRef
72.
go back to reference Ptaszynski P et al (2013) Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. Europace 15(1):116–121PubMedCrossRef Ptaszynski P et al (2013) Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. Europace 15(1):116–121PubMedCrossRef
73.
go back to reference Mathew ST, Po SS, Thadani U (2018) Inappropriate sinus tachycardia-symptom and heart rate reduction with ivabradine: a pooled analysis of prospective studies. Heart Rhythm 15(2):240–247PubMedCrossRef Mathew ST, Po SS, Thadani U (2018) Inappropriate sinus tachycardia-symptom and heart rate reduction with ivabradine: a pooled analysis of prospective studies. Heart Rhythm 15(2):240–247PubMedCrossRef
75.
go back to reference Paniz-Mondolfi A et al (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92(7):699–702CrossRefPubMed Paniz-Mondolfi A et al (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92(7):699–702CrossRefPubMed
77.
go back to reference Kanberg N et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e1759PubMedCrossRef Kanberg N et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e1759PubMedCrossRef
78.
go back to reference Zhou Z et al (2020) Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267(8):2179–2184PubMedCrossRefPubMedCentral Zhou Z et al (2020) Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267(8):2179–2184PubMedCrossRefPubMedCentral
79.
go back to reference Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50(3):499–511PubMedCrossRef Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50(3):499–511PubMedCrossRef
80.
go back to reference Meinhardt J et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24(2):168–175PubMedCrossRef Meinhardt J et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24(2):168–175PubMedCrossRef
81.
82.
83.
go back to reference Blitshteyn S, Whitelaw S (2021) Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res 69:212PubMedCrossRefPubMedCentral Blitshteyn S, Whitelaw S (2021) Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res 69:212PubMedCrossRefPubMedCentral
84.
go back to reference Tagaloa E et al (2021) A rare case of Guillain-Barré syndrome with severe pandysautonomia. J Investig Med High Impact Case Rep 9:23247096211019560PubMedPubMedCentral Tagaloa E et al (2021) A rare case of Guillain-Barré syndrome with severe pandysautonomia. J Investig Med High Impact Case Rep 9:23247096211019560PubMedPubMedCentral
85.
go back to reference Kaliyaperumal D et al (2021) Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol 32:247PubMedCrossRef Kaliyaperumal D et al (2021) Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol 32:247PubMedCrossRef
86.
go back to reference Guaraldi P et al (2020) Testing cardiovascular autonomic function in the COVID-19 era: lessons from Bologna’s Autonomic Unit. Clin Auton Res 30(4):325–330PubMedPubMedCentralCrossRef Guaraldi P et al (2020) Testing cardiovascular autonomic function in the COVID-19 era: lessons from Bologna’s Autonomic Unit. Clin Auton Res 30(4):325–330PubMedPubMedCentralCrossRef
87.
go back to reference Haensel A et al (2008) The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology 33(10):1305–1312PubMedPubMedCentralCrossRef Haensel A et al (2008) The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology 33(10):1305–1312PubMedPubMedCentralCrossRef
88.
go back to reference Haarala A et al (2011) Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The cardiovascular risk in young finns study. Eur J Clin Invest 41(9):951–957PubMedCrossRef Haarala A et al (2011) Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The cardiovascular risk in young finns study. Eur J Clin Invest 41(9):951–957PubMedCrossRef
89.
go back to reference Martínez-Rosales E et al (2020) Heart rate variability in women with systemic lupus erythematosus: association with health-related parameters and effects of aerobic exercise. Int J Environ Res Public Health 17(24):9501PubMedCentralCrossRef Martínez-Rosales E et al (2020) Heart rate variability in women with systemic lupus erythematosus: association with health-related parameters and effects of aerobic exercise. Int J Environ Res Public Health 17(24):9501PubMedCentralCrossRef
90.
91.
go back to reference Moroi MK et al (2021) Prevention and management of supine hypertension in patients with orthostatic hypotension. Am J Ther 28(2):e228–e231PubMedCrossRef Moroi MK et al (2021) Prevention and management of supine hypertension in patients with orthostatic hypotension. Am J Ther 28(2):e228–e231PubMedCrossRef
92.
go back to reference Kario K et al (2021) Effect of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, on nocturnal hypertension: a post hoc analysis of the ESAX-HTN study. Am J Hypertens 34(5):540–551PubMedCrossRef Kario K et al (2021) Effect of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, on nocturnal hypertension: a post hoc analysis of the ESAX-HTN study. Am J Hypertens 34(5):540–551PubMedCrossRef
93.
go back to reference Okamoto LE et al (2021) Local passive heat for the treatment of hypertension in autonomic failure. J Am Heart Assoc 10(7):18979CrossRef Okamoto LE et al (2021) Local passive heat for the treatment of hypertension in autonomic failure. J Am Heart Assoc 10(7):18979CrossRef
94.
go back to reference Shannon J et al (1997) The hypertension of autonomic failure and its treatment. Hypertension 30(5):1062–1067PubMedCrossRef Shannon J et al (1997) The hypertension of autonomic failure and its treatment. Hypertension 30(5):1062–1067PubMedCrossRef
95.
go back to reference Lo A et al (2021) Pharmacokinetics and pharmacodynamics of ampreloxetine, a novel, selective norepinephrine reuptake inhibitor, in symptomatic neurogenic orthostatic hypotension. Clin Auton Res 31:395–403PubMedPubMedCentralCrossRef Lo A et al (2021) Pharmacokinetics and pharmacodynamics of ampreloxetine, a novel, selective norepinephrine reuptake inhibitor, in symptomatic neurogenic orthostatic hypotension. Clin Auton Res 31:395–403PubMedPubMedCentralCrossRef
96.
go back to reference Nikolin S et al (2019) Comparison of site localization techniques for brain stimulation. J ECT 35(2):127–132PubMedCrossRef Nikolin S et al (2019) Comparison of site localization techniques for brain stimulation. J ECT 35(2):127–132PubMedCrossRef
97.
go back to reference Okano AH et al (2015) Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 49(18):1213–1218PubMedCrossRef Okano AH et al (2015) Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 49(18):1213–1218PubMedCrossRef
Metadata
Title
Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series
Author
Richard C. Becker
Publication date
01-10-2021
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 3/2021
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-021-02549-6

Other articles of this Issue 3/2021

Journal of Thrombosis and Thrombolysis 3/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.