Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 4/2019

01-11-2019 | Phlebothrombosis

A narrative review of red blood cell distribution width as a marker for pulmonary embolism

Authors: Lindsay Hammons, Jason Filopei, David Steiger, Eric Bondarsky

Published in: Journal of Thrombosis and Thrombolysis | Issue 4/2019

Login to get access

Abstract

Red blood cell distribution width (RDW) is a marker of variability in red blood cell size, and is routinely reported as part of a patient’s complete blood count. RDW has been shown to be associated with the prediction, severity and prognosis of pulmonary embolism (PE) in recent studies. The underlying biomolecular mechanism of the relationship of RDW to PE is largely unknown, but is thought to be due to the relationship of RDW with acute inflammatory markers and variations in blood viscosity. This review substantiates that a high RDW level, defined using either an arbitrary number or according to receiver operator curve statistics, is associated with a higher risk of acute PE, increased severity (massive vs. submassive) of PE and increased mortality in patients with PE. Nevertheless, the comparison of current studies is limited due to the definition of high RDW (each study uses a different RDW cutoff level), the broad range of exclusion criteria and the inclusion of differing modalities used to diagnose a PE (computed tomography angiogram, ventilation-perfusion study, or clinical diagnosis). Despite the above limitations, these studies provide a promising future clinical use for RDW as a marker of PE.
Footnotes
1
The pulmonary embolism severity index (PESI) score is a clinical tool that predicts 30-day mortality in those with a PE based on 11 criteria—age, sex, history of cancer, history of heart failure, history of chronic lung disease, heart rate ≥ 110 beats/min systolic blood pressure < 100 mmHg, respiratory rate ≥ 30, temperature < 96.8 °F/36 °C, altered mental status and oxygen saturation < 90%; the algorithm categorizes patients into five groups corresponding to various prognoses, with the highest-scoring groups having the poorest outcome (30-day mortality up to 24.5%) [36]. The simplified PESI (sPESI) is derived from its predecessor and predicts 30-day mortality, but only uses six criteria—age > 80 years, history of cancer, history of chronic cardiopulmonary disease, heart rate ≥ 110 beats/min, systolic blood pressure 9 < 100 mmHg and arterial oxygen saturation < 90% measured at the time of PE diagnosis; each positive variable is assigned 1 point and the patient is then classified into a low-risk (0 points and 1.1% 30-day mortality rate) or high-risk (≥ 1 point[s] and 8.9% 30-day mortality rate) group[59].
 
2
The European Society of Cardiology (ESC) also uses a scoring system (including the sPESI score) to classify PE patients into risk groups based on 30-day mortality risk: low (1 point), intermediate (2 points), intermediate-high (3 points) and high (4 points)[38, 60]. For the ESC classification system, one point is allotted to each of the following risk variables: shock/hypotension (systolic blood pressure < 90 mmHg, or a systolic pressure drop by ≥ 50 mmHg for > 15 min), sPESI ≥ 1, RV dysfunction, and troponin T ≥ 14 pg/mL and/or NT-proBNP > 600 pg/mL [38, 60]. The low risk group has a < 1% 30-day mortality, whereas the high risk group has a > 15% 30-day mortality [38].
 
3
The Jen scoring system, published in 2018, also predicts 30-day mortality using high-risk variables to define a binary prediction classification (low vs. high risk). There are eight variables, and they are weighted as follows: age in years, HF (+ 20), lung disease (+ 25), respiratory rate > 30 bpm (+ 40), altered mental status (+ 10), IV required (+ 50), ALT > 75 IU/L (+ 40), and hemoptysis (+ 60). Thirty-day mortality risks were 2.1% and 23% for low (score ≤ 100) and high (> 100) risk patients, respectively (p < 0.001) [61].
 
Literature
1.
go back to reference Stein PD, Beemath A, Olson RE (2005) Trends in the incidence of pulmonary embolism and deep venous thrombosis in hospitalized patients. Am J Cardiol 95(12):1525–1526PubMed Stein PD, Beemath A, Olson RE (2005) Trends in the incidence of pulmonary embolism and deep venous thrombosis in hospitalized patients. Am J Cardiol 95(12):1525–1526PubMed
2.
go back to reference Dalen JE, Alpert JS (1975) Natural history of pulmonary embolism. Prog Cardiovasc Dis 17(4):259–270PubMed Dalen JE, Alpert JS (1975) Natural history of pulmonary embolism. Prog Cardiovasc Dis 17(4):259–270PubMed
3.
go back to reference Naess IA, Christiansen SC, Romundstad P et al (2007) Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 5(4):692–699PubMed Naess IA, Christiansen SC, Romundstad P et al (2007) Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 5(4):692–699PubMed
4.
go back to reference Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373(9658):155–166PubMed Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373(9658):155–166PubMed
5.
go back to reference Simel DL, DeLong ER, Feussner JR, Weinberg JB, Crawford J (1988) Erythrocyte anisocytosis: visual inspection of blood films versus automated analysis of red blood cell distribution width. Arch Intern Med 148(4):822–824PubMed Simel DL, DeLong ER, Feussner JR, Weinberg JB, Crawford J (1988) Erythrocyte anisocytosis: visual inspection of blood films versus automated analysis of red blood cell distribution width. Arch Intern Med 148(4):822–824PubMed
6.
go back to reference Marsh WL, Bishop JW, Darcy TP (1987) Evaluation of red cell volume distribution width (RDW). Hematol Pathol 1(2):117–123PubMed Marsh WL, Bishop JW, Darcy TP (1987) Evaluation of red cell volume distribution width (RDW). Hematol Pathol 1(2):117–123PubMed
7.
go back to reference Patel KV, Mohanty JG, Kanapuru B et al (2013) Association of the red cell distribution width with red blood cell deformability. Adv Exp Med Biol 765:211–216PubMedPubMedCentral Patel KV, Mohanty JG, Kanapuru B et al (2013) Association of the red cell distribution width with red blood cell deformability. Adv Exp Med Biol 765:211–216PubMedPubMedCentral
8.
go back to reference Lippi GT, Targher G, Montagnana M et al (2009) Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 133(4):628–632PubMed Lippi GT, Targher G, Montagnana M et al (2009) Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 133(4):628–632PubMed
9.
go back to reference Sincer I, Zorlu A, Yilmaz M et al (2012) Relationship between red cell distribution width and right ventricular dysfunction in patients with chronic obstructive pulmonary disease. Heart Lung 41(3):238–243PubMed Sincer I, Zorlu A, Yilmaz M et al (2012) Relationship between red cell distribution width and right ventricular dysfunction in patients with chronic obstructive pulmonary disease. Heart Lung 41(3):238–243PubMed
10.
go back to reference Oh J, Kang SM, Hong N et al (2009) Relation between red cell distribution width with echocardiographic parameters in patients with acute heart failure. J Card Fail 15(6):517–522PubMed Oh J, Kang SM, Hong N et al (2009) Relation between red cell distribution width with echocardiographic parameters in patients with acute heart failure. J Card Fail 15(6):517–522PubMed
11.
go back to reference Tonelli M, Sacks F, Arnold M et al (2008) Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 117(2):163–168PubMed Tonelli M, Sacks F, Arnold M et al (2008) Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 117(2):163–168PubMed
12.
go back to reference Felker GM, Allen LA, Pocock SJ et al (2007) Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. J Am Coll Cardiol 50(1):40–47PubMed Felker GM, Allen LA, Pocock SJ et al (2007) Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. J Am Coll Cardiol 50(1):40–47PubMed
13.
go back to reference Zorlu A, Bektasoglu G, Guven FM et al (2012) Usefulness of admission red cell distribution width as a predictor of early mortality in patients with acute pulmonary embolism. Am J Cardiol 109(1):128–134PubMed Zorlu A, Bektasoglu G, Guven FM et al (2012) Usefulness of admission red cell distribution width as a predictor of early mortality in patients with acute pulmonary embolism. Am J Cardiol 109(1):128–134PubMed
14.
go back to reference Gong YL, Long X, Jin J et al (2017) Elevation of red cell distribution width during hospitalization predicts mortality in patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 29(6):481–485PubMed Gong YL, Long X, Jin J et al (2017) Elevation of red cell distribution width during hospitalization predicts mortality in patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 29(6):481–485PubMed
15.
go back to reference Otero TMN, Canales C, Yeh DD et al (2016) Elevated red cell distribution width at initiation of critical care is associated with mortality in surgical intensive care unit patients. J Crit Care 34:7–11PubMedPubMedCentral Otero TMN, Canales C, Yeh DD et al (2016) Elevated red cell distribution width at initiation of critical care is associated with mortality in surgical intensive care unit patients. J Crit Care 34:7–11PubMedPubMedCentral
16.
go back to reference Makhoul BF, Khourieh A, Kaplan M et al (2013) Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure. Int J Cardiol 167(4):1412–1416PubMed Makhoul BF, Khourieh A, Kaplan M et al (2013) Relation between changes in red cell distribution width and clinical outcomes in acute decompensated heart failure. Int J Cardiol 167(4):1412–1416PubMed
17.
go back to reference Kim CH, Park JT, Kim EJ et al (2013) An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care 17(6):R282PubMedPubMedCentral Kim CH, Park JT, Kim EJ et al (2013) An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care 17(6):R282PubMedPubMedCentral
18.
go back to reference Zoller B, Melander O, Svensson P, Engstrom G (2014) Red cell distribution width and risk for venous thromboembolism: a population-based cohort study. Thromb Res 133(3):334–339PubMed Zoller B, Melander O, Svensson P, Engstrom G (2014) Red cell distribution width and risk for venous thromboembolism: a population-based cohort study. Thromb Res 133(3):334–339PubMed
19.
go back to reference Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G (2011) A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 9(3):481–488PubMedPubMedCentral Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G (2011) A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 9(3):481–488PubMedPubMedCentral
20.
go back to reference Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–1175PubMedPubMedCentral Gersh KC, Nagaswami C, Weisel JW (2009) Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 102(6):1169–1175PubMedPubMedCentral
21.
go back to reference Celik A, Ozcan IT, Gundes A et al (2015) Usefulness of admission hematologic parameters as diagnostic tools in acute pulmonary embolism. Kaohsiung J Med Sci 31(3):145–149PubMed Celik A, Ozcan IT, Gundes A et al (2015) Usefulness of admission hematologic parameters as diagnostic tools in acute pulmonary embolism. Kaohsiung J Med Sci 31(3):145–149PubMed
22.
go back to reference Akgedik R, Karamanli H, Kurt AB, Gunaydin ZY (2018) Usefulness of admission red blood cell distribution width as a predictor of severity of acute pulmonary embolism. Clin Respir J 12(2):786–794PubMed Akgedik R, Karamanli H, Kurt AB, Gunaydin ZY (2018) Usefulness of admission red blood cell distribution width as a predictor of severity of acute pulmonary embolism. Clin Respir J 12(2):786–794PubMed
23.
go back to reference Gunay E, Sarinic Ulasli S, Kacar E et al (2014) Can platelet indices predict obstruction level of pulmonary vascular bed in patients with acute pulmonary embolism? Clin Respir J 8(1):33–40PubMed Gunay E, Sarinic Ulasli S, Kacar E et al (2014) Can platelet indices predict obstruction level of pulmonary vascular bed in patients with acute pulmonary embolism? Clin Respir J 8(1):33–40PubMed
24.
go back to reference Inuzuka R, Abe J (2015) Red blood cell distribution width as a link between ineffective erythropoiesis and chronic inflammation in heart failure. Circ J 79(5):974–975PubMed Inuzuka R, Abe J (2015) Red blood cell distribution width as a link between ineffective erythropoiesis and chronic inflammation in heart failure. Circ J 79(5):974–975PubMed
25.
go back to reference Allen LA, Felker GM, Mehra MR et al (2010) Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure. J Card Fail 16(3):230–238PubMed Allen LA, Felker GM, Mehra MR et al (2010) Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure. J Card Fail 16(3):230–238PubMed
26.
go back to reference Cha MJ, Lee HS, Kim HM et al (2017) Association between red cell distribution width and thromboembolic events in patients with atrial fibrillation. Eur J Intern Med 46:41–46PubMed Cha MJ, Lee HS, Kim HM et al (2017) Association between red cell distribution width and thromboembolic events in patients with atrial fibrillation. Eur J Intern Med 46:41–46PubMed
27.
go back to reference Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G (2015) Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 52(2):86–105PubMed Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G (2015) Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 52(2):86–105PubMed
29.
go back to reference Yardan T, Meric M, Kati C, Celenk Y, Atici AG (2016) Mean platelet volume and mean platelet volume/platelet count ratio in risk stratification of pulmonary embolism. Medicina (Kaunas) 52(2):110–115 Yardan T, Meric M, Kati C, Celenk Y, Atici AG (2016) Mean platelet volume and mean platelet volume/platelet count ratio in risk stratification of pulmonary embolism. Medicina (Kaunas) 52(2):110–115
30.
go back to reference Wells PS, Ginsberg JS, Anderson DR et al (1998) Use of a clinical model for safe management of patients with suspected pulmonary embolism. Ann Intern Med 129(12):997–1005PubMed Wells PS, Ginsberg JS, Anderson DR et al (1998) Use of a clinical model for safe management of patients with suspected pulmonary embolism. Ann Intern Med 129(12):997–1005PubMed
31.
go back to reference Wicki JP, Perrier A, Perneger TV, Bounameaux H, Junod AF (2000) Prediction adverse outcome in patients with acute pulmonary embolism: a risk score. Thromb Haemost 84:548–552PubMed Wicki JP, Perrier A, Perneger TV, Bounameaux H, Junod AF (2000) Prediction adverse outcome in patients with acute pulmonary embolism: a risk score. Thromb Haemost 84:548–552PubMed
32.
go back to reference Calisir C, Yavas US, Ozkan IR et al (2009) Performance of the Wells and revised Geneva scores for predicting pulmonary embolism. Eur J Emerg Med 16(1):49–52PubMed Calisir C, Yavas US, Ozkan IR et al (2009) Performance of the Wells and revised Geneva scores for predicting pulmonary embolism. Eur J Emerg Med 16(1):49–52PubMed
34.
go back to reference Singh B, Mommer SK, Erwin PJ, Mascarenhas SS, Parsaik AK (2013) Pulmonary embolism rule-out criteria (PERC) in pulmonary embolism–revisited: a systematic review and meta-analysis. Emerg Med J 30(9):701–706PubMed Singh B, Mommer SK, Erwin PJ, Mascarenhas SS, Parsaik AK (2013) Pulmonary embolism rule-out criteria (PERC) in pulmonary embolism–revisited: a systematic review and meta-analysis. Emerg Med J 30(9):701–706PubMed
35.
go back to reference Kucher N, Rossi E, DeRosa M, Goldhaber SZ (2006) Massive pulmonary embolism. Circulation 113(4):577–582PubMed Kucher N, Rossi E, DeRosa M, Goldhaber SZ (2006) Massive pulmonary embolism. Circulation 113(4):577–582PubMed
36.
go back to reference Aujesky D, Obrosky DS, Stone RA et al (2005) Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 172(8):1041–1046PubMedPubMedCentral Aujesky D, Obrosky DS, Stone RA et al (2005) Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 172(8):1041–1046PubMedPubMedCentral
37.
go back to reference Secemsky E, Chang Y, Jain CC et al (2018) Contemporary management and outcomes of patients with massive and submassive pulmonary embolism. Am J Med 131(12):1506–1514PubMed Secemsky E, Chang Y, Jain CC et al (2018) Contemporary management and outcomes of patients with massive and submassive pulmonary embolism. Am J Med 131(12):1506–1514PubMed
38.
go back to reference Torbicki A, Perrier A, Konstantinides S et al (2008) Guidelines on the diagnosis and management of acute pulmonary embolism: the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 29(18):2276–2315PubMed Torbicki A, Perrier A, Konstantinides S et al (2008) Guidelines on the diagnosis and management of acute pulmonary embolism: the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 29(18):2276–2315PubMed
39.
go back to reference Jaff MR, McMurtry MS, Archer SL et al (2011) Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123(16):1788–1830PubMed Jaff MR, McMurtry MS, Archer SL et al (2011) Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123(16):1788–1830PubMed
40.
go back to reference Inonu H, Acu B, Pazarli AC et al (2012) The value of the computed tomographic obstruction index in the identification of massive pulmonary thromboembolism. Diagn Interv Radiol 18(3):255–260PubMed Inonu H, Acu B, Pazarli AC et al (2012) The value of the computed tomographic obstruction index in the identification of massive pulmonary thromboembolism. Diagn Interv Radiol 18(3):255–260PubMed
41.
go back to reference Sunnetcioglu A, Sertogullarindan B, Ozbay B, Asker S, Ekin S (2015) Assessments of the associations of thrombus localization with accompanying disorders, risk factors, D-dimer levels, and the red cell distribution width in pulmonary embolism. Clinics 70(6):441–445PubMedPubMedCentral Sunnetcioglu A, Sertogullarindan B, Ozbay B, Asker S, Ekin S (2015) Assessments of the associations of thrombus localization with accompanying disorders, risk factors, D-dimer levels, and the red cell distribution width in pulmonary embolism. Clinics 70(6):441–445PubMedPubMedCentral
42.
go back to reference Bucciarelli P, Maino A, Felicetta I et al (2015) Association between red cell distribution width and risk of venous thromboembolism. Thromb Res 136(3):590–594PubMed Bucciarelli P, Maino A, Felicetta I et al (2015) Association between red cell distribution width and risk of venous thromboembolism. Thromb Res 136(3):590–594PubMed
43.
go back to reference Rahimtoola A, Bergin JD (2005) Acute pulmonary embolism: an update on diagnosis and management. Curr Probl Cardiol 30(2):61–114PubMed Rahimtoola A, Bergin JD (2005) Acute pulmonary embolism: an update on diagnosis and management. Curr Probl Cardiol 30(2):61–114PubMed
44.
go back to reference Ozsu S, Abul Y, Gunaydin S, Orem A, Ozlu T (2014) Prognostic value of red cell distribution width in patients with pulmonary embolism. Clin Appl Thromb Hemost 20(4):365–370PubMed Ozsu S, Abul Y, Gunaydin S, Orem A, Ozlu T (2014) Prognostic value of red cell distribution width in patients with pulmonary embolism. Clin Appl Thromb Hemost 20(4):365–370PubMed
45.
go back to reference Zhou XY, Chen HL, Ni SS (2017) Red cell distribution width in predicting 30-day mortality in patients with pulmonary embolism. J Crit Care 37:197–201PubMed Zhou XY, Chen HL, Ni SS (2017) Red cell distribution width in predicting 30-day mortality in patients with pulmonary embolism. J Crit Care 37:197–201PubMed
46.
go back to reference Sen HS, Abakay O, Tanrikulu AC et al (2014) Is a complete blood cell count useful in determining the prognosis of pulmonary embolism? Wien Klin Wochenschr 126(11–12):347–354PubMed Sen HS, Abakay O, Tanrikulu AC et al (2014) Is a complete blood cell count useful in determining the prognosis of pulmonary embolism? Wien Klin Wochenschr 126(11–12):347–354PubMed
47.
go back to reference Yazici S, Kiris T, Sadik Ceylan U et al (2018) Relation between dynamic change of red cell distribution width and 30-day mortality in patients with acute pulmonary embolism. Clin Respir J 12(3):953–960PubMed Yazici S, Kiris T, Sadik Ceylan U et al (2018) Relation between dynamic change of red cell distribution width and 30-day mortality in patients with acute pulmonary embolism. Clin Respir J 12(3):953–960PubMed
49.
go back to reference Kheirkham-Sabetghadam S, Jenab Y, Ghoreyshi-Hefzabad SM et al (2018) Association between elevated red blood cell distribution width and long-term mortality in acute pulmonary embolism. Turk J Med Sci 48(2):318–323PubMed Kheirkham-Sabetghadam S, Jenab Y, Ghoreyshi-Hefzabad SM et al (2018) Association between elevated red blood cell distribution width and long-term mortality in acute pulmonary embolism. Turk J Med Sci 48(2):318–323PubMed
50.
go back to reference Yazici S, Siris T, Ceylan US et al (2016) The accuracy of combined use of troponin and red cell distribution width in predicting mortality of patients with acute pulmonary embolism. Wien Klin Wochenschr 128(Suppl 8):596–603PubMed Yazici S, Siris T, Ceylan US et al (2016) The accuracy of combined use of troponin and red cell distribution width in predicting mortality of patients with acute pulmonary embolism. Wien Klin Wochenschr 128(Suppl 8):596–603PubMed
51.
go back to reference Condliffe R, Kiely DG, Gibbs JS (2008) Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med 177(10):1122–1127PubMed Condliffe R, Kiely DG, Gibbs JS (2008) Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med 177(10):1122–1127PubMed
52.
go back to reference Witkin AS, Channick RN (2015) Chronic thromboembolic pulmonary hypertension: the end result of pulmonary embolism. Curr Cardiol Rep 17(8):63PubMed Witkin AS, Channick RN (2015) Chronic thromboembolic pulmonary hypertension: the end result of pulmonary embolism. Curr Cardiol Rep 17(8):63PubMed
53.
go back to reference Abul Y, Ozsu S, Korkmaz A et al (2014) Red cell distribution width: a new predictor for chronic thromboembolic pulmonary hypertension after pulmonary embolism. Chronic Respir Dis 11(2):73–81 Abul Y, Ozsu S, Korkmaz A et al (2014) Red cell distribution width: a new predictor for chronic thromboembolic pulmonary hypertension after pulmonary embolism. Chronic Respir Dis 11(2):73–81
54.
go back to reference Wang W, Liu J, Yang YH et al (2016) Red cell distribution width is increased in chronic thromboembolic pulmonary hypertension. Clin Respir J 10(1):54–60PubMed Wang W, Liu J, Yang YH et al (2016) Red cell distribution width is increased in chronic thromboembolic pulmonary hypertension. Clin Respir J 10(1):54–60PubMed
55.
go back to reference Forhecz Z, Gombos T, Borgulya G et al (2009) Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 158(4):659–666PubMed Forhecz Z, Gombos T, Borgulya G et al (2009) Red cell distribution width in heart failure: prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am Heart J 158(4):659–666PubMed
56.
go back to reference Montagnana M, Cervellin G, Meschi T, Lippi G (2011) The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med 50(4):635–641PubMed Montagnana M, Cervellin G, Meschi T, Lippi G (2011) The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med 50(4):635–641PubMed
57.
go back to reference Kato H, Inshida J, Imagawa S et al (2005) Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. FASEB J 19(14):2023–2025PubMed Kato H, Inshida J, Imagawa S et al (2005) Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. FASEB J 19(14):2023–2025PubMed
58.
go back to reference Gossmann J, Burkhardt R, Harder S et al (2001) Angiotensin II infusion increases plasma erythropoietin levels via an angiotensin II type 1 receptor-dependent pathway. Kidney Int 60(1):83–86PubMed Gossmann J, Burkhardt R, Harder S et al (2001) Angiotensin II infusion increases plasma erythropoietin levels via an angiotensin II type 1 receptor-dependent pathway. Kidney Int 60(1):83–86PubMed
59.
go back to reference Jimenez D, Aujesky D, Moores L et al (2010) Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170(15):1383–1389PubMed Jimenez D, Aujesky D, Moores L et al (2010) Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 170(15):1383–1389PubMed
Metadata
Title
A narrative review of red blood cell distribution width as a marker for pulmonary embolism
Authors
Lindsay Hammons
Jason Filopei
David Steiger
Eric Bondarsky
Publication date
01-11-2019
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 4/2019
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-019-01906-w

Other articles of this Issue 4/2019

Journal of Thrombosis and Thrombolysis 4/2019 Go to the issue