Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 4/2019

Open Access 01-12-2019 | Epilepsy

Keto microbiota: A powerful contributor to host disease recovery

Authors: Amanda Cabrera-Mulero, Alberto Tinahones, Borja Bandera, Isabel Moreno-Indias, Manuel Macías-González, Francisco J. Tinahones

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 4/2019

Login to get access

Abstract

Gut microbiota (GM) is a key contributor to host metabolism and physiology. Data generated on comparing diseased and healthy subjects have reported changes in the GM profile between both health states, suggesting certain bacterial composition could be involved in pathogenesis. Moreover, studies reported that reshaping of GM could contribute actively to disease recovery. Interestingly, ketogenic diets (KD) have emerged recently as new economic dietotherapeutic strategy to combat a myriad of diseases (refractory epilepsy, obesity, cancer, neurodegenerative diseases…). KD, understood in a broad sense, refers to whatever dietetic approximation, which causes physiological ketosis. Therefore, high fat-low carbs diets, fasting periods or caloric restriction constitute different strategies to produce an increase of main ketones bodies, acetoacetate and β-hydroxybutyrate, in blood. Involved biological mechanisms in ketotherapeutic effects are still to be unravelled. However, it has been pointed out that GM remodelling by KD, from now on “keto microbiota”, may play a crucial role in patient response to KD treatment. In fact, germ-free animals were resistant to ketotherapeutic effects; reinforcing keto microbiota may be a powerful contributor to host disease recovery. In this review, we will comment the influence of gut microbiota on host, as well as, therapeutic potential of ketogenic diets and keto microbiota to restore health status. Current progress and limitations will be argued too. In spite of few studies have defined applicability and mechanisms of KD, in the light of results, keto microbiota might be a new useful therapeutic agent.
Literature
1.
go back to reference P. D. Cani, Human gut microbiome: hopes, threats and promises, Gut, vol. 67, n.o 9, pp. 1716–1725, sep. 2018.PubMedCrossRef P. D. Cani, Human gut microbiome: hopes, threats and promises, Gut, vol. 67, n.o 9, pp. 1716–1725, sep. 2018.PubMedCrossRef
2.
go back to reference E. Gianchecchi y A. Fierabracci, Recent advances on microbiota involvement in the pathogenesis of autoimmunity, Int J Mol Sci., vol. 20, no 2, p. 283, ene. 2019.PubMedCentralCrossRef E. Gianchecchi y A. Fierabracci, Recent advances on microbiota involvement in the pathogenesis of autoimmunity, Int J Mol Sci., vol. 20, no 2, p. 283, ene. 2019.PubMedCentralCrossRef
3.
go back to reference A. B. Shreiner, J. Y. Kao, y V. B. Young, The gut microbiome in health and in disease:, Curr Opin Gastroenterol., vol. 31, n.o 1, pp. 69–75, ene. 2015.PubMedPubMedCentralCrossRef A. B. Shreiner, J. Y. Kao, y V. B. Young, The gut microbiome in health and in disease:, Curr Opin Gastroenterol., vol. 31, n.o 1, pp. 69–75, ene. 2015.PubMedPubMedCentralCrossRef
4.
go back to reference X. Zheng, S. Wang, y W. Jia, Calorie restriction and its impact on gut microbial composition and global metabolism, Front Med., vol. 12, n.o 6, pp. 634–644, dic. 2018.PubMedCrossRef X. Zheng, S. Wang, y W. Jia, Calorie restriction and its impact on gut microbial composition and global metabolism, Front Med., vol. 12, n.o 6, pp. 634–644, dic. 2018.PubMedCrossRef
5.
go back to reference Y. Zhang, S. Zhou, Y. Zhou, L. Yu, L. Zhang, y Y. Wang, Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet, Epilepsy Res., vol. 145, pp. 163–168, sep. 2018.PubMedCrossRef Y. Zhang, S. Zhou, Y. Zhou, L. Yu, L. Zhang, y Y. Wang, Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet, Epilepsy Res., vol. 145, pp. 163–168, sep. 2018.PubMedCrossRef
6.
go back to reference E. M. M. Quigley, Microbiota-brain-gut Axis and neurodegenerative diseases, Curr Neurol Neurosci Rep., vol. 17, n.o 12, dic. 2017. E. M. M. Quigley, Microbiota-brain-gut Axis and neurodegenerative diseases, Curr Neurol Neurosci Rep., vol. 17, n.o 12, dic. 2017.
7.
go back to reference M. C. Cenit, Y. Sanz, y P. Codoñer-Franch, Influence of gut microbiota on neuropsychiatric disorders, World J Gastroenterol., vol. 23, n.o 30, p. 5486, 2017.PubMedPubMedCentralCrossRef M. C. Cenit, Y. Sanz, y P. Codoñer-Franch, Influence of gut microbiota on neuropsychiatric disorders, World J Gastroenterol., vol. 23, n.o 30, p. 5486, 2017.PubMedPubMedCentralCrossRef
9.
go back to reference C. Fraumene et al., Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota, Gut Microbes, vol. 9, n.o 2, pp. 104–114, mar. 2018. C. Fraumene et al., Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota, Gut Microbes, vol. 9, n.o 2, pp. 104–114, mar. 2018.
10.
go back to reference E. N. C. Manoogian y S. Panda, Circadian rhythms, time-restricted feeding, and healthy aging, Ageing Res Rev., vol. 39, pp. 59–67, oct. 2017.PubMedCrossRef E. N. C. Manoogian y S. Panda, Circadian rhythms, time-restricted feeding, and healthy aging, Ageing Res Rev., vol. 39, pp. 59–67, oct. 2017.PubMedCrossRef
11.
go back to reference J. L. Kaczmarek, S. V. Thompson, y H. D. Holscher, Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health, Nutr Rev., vol. 75, n.o 9, pp. 673–682, sep. 2017.PubMedPubMedCentralCrossRef J. L. Kaczmarek, S. V. Thompson, y H. D. Holscher, Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health, Nutr Rev., vol. 75, n.o 9, pp. 673–682, sep. 2017.PubMedPubMedCentralCrossRef
12.
go back to reference R. M. Voigt, C. B. Forsyth, S. J. Green, P. A. Engen, y A. Keshavarzian, Circadian rhythm and the gut microbiome, en Int Rev Neurobiol, vol. 131, Elsevier, 2016, pp. 193–205. R. M. Voigt, C. B. Forsyth, S. J. Green, P. A. Engen, y A. Keshavarzian, Circadian rhythm and the gut microbiome, en Int Rev Neurobiol, vol. 131, Elsevier, 2016, pp. 193–205.
13.
go back to reference M. P. Mattson, V. D. Longo, y M. Harvie, Impact of intermittent fasting on health and disease processes, Ageing Res Rev., vol. 39, pp. 46–58, oct. 2017.PubMedCrossRef M. P. Mattson, V. D. Longo, y M. Harvie, Impact of intermittent fasting on health and disease processes, Ageing Res Rev., vol. 39, pp. 46–58, oct. 2017.PubMedCrossRef
14.
go back to reference V. D. Longo y S. Panda, Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan, Cell Metab., vol. 23, n.o 6, pp. 1048–1059, jun. 2016.PubMedPubMedCentralCrossRef V. D. Longo y S. Panda, Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan, Cell Metab., vol. 23, n.o 6, pp. 1048–1059, jun. 2016.PubMedPubMedCentralCrossRef
15.
go back to reference A. Ferreiro, G. Dantas, y M. A. Ciorba, Insights into how probiotics colonize the healthy human gut, Gastroenterology, ene. 2019. A. Ferreiro, G. Dantas, y M. A. Ciorba, Insights into how probiotics colonize the healthy human gut, Gastroenterology, ene. 2019.
16.
go back to reference M. E. Sanders, A. Benson, S. Lebeer, D. J. Merenstein, y T. R. Klaenhammer, Shared mechanisms among probiotic taxa: implications for general probiotic claims, Curr Opin Biotechnol., vol. 49, pp. 207–216, feb. 2018.PubMedCrossRef M. E. Sanders, A. Benson, S. Lebeer, D. J. Merenstein, y T. R. Klaenhammer, Shared mechanisms among probiotic taxa: implications for general probiotic claims, Curr Opin Biotechnol., vol. 49, pp. 207–216, feb. 2018.PubMedCrossRef
17.
go back to reference F. Mosca, M. L. Gianni, y M. Rescigno, Can Postbiotics represent a new strategy for NEC?, New York, NY: Springer US, 2019. F. Mosca, M. L. Gianni, y M. Rescigno, Can Postbiotics represent a new strategy for NEC?, New York, NY: Springer US, 2019.
18.
go back to reference B. Sánchez, S. Delgado, A. Blanco-Míguez, A. Lourenço, M. Gueimonde, y A. Margolles, Probiotics, gut microbiota, and their influence on host health and disease, Mol Nutr Food Res., vol. 61, n.o 1, p. 1600240, ene. 2017.CrossRef B. Sánchez, S. Delgado, A. Blanco-Míguez, A. Lourenço, M. Gueimonde, y A. Margolles, Probiotics, gut microbiota, and their influence on host health and disease, Mol Nutr Food Res., vol. 61, n.o 1, p. 1600240, ene. 2017.CrossRef
19.
go back to reference B. Wilson y K. Whelan, Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders: prebiotic fructans and GOS, J Gastroenterol Hepatol., vol. 32, pp. 64–68, mar. 2017.PubMedCrossRef B. Wilson y K. Whelan, Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders: prebiotic fructans and GOS, J Gastroenterol Hepatol., vol. 32, pp. 64–68, mar. 2017.PubMedCrossRef
20.
go back to reference B. Senghor, C. Sokhna, R. Ruimy, y J.-C. Lagier, Gut microbiota diversity according to dietary habits and geographical provenance, Hum Microbiome J., vol. 7-8, pp. 1–9, abr. 2018. B. Senghor, C. Sokhna, R. Ruimy, y J.-C. Lagier, Gut microbiota diversity according to dietary habits and geographical provenance, Hum Microbiome J., vol. 7-8, pp. 1–9, abr. 2018.
21.
go back to reference L. P. de B. Sampaio, Ketogenic diet for epilepsy treatment, Arq Neuropsiquiatr., vol. 74, n.o 10, pp. 842–848, oct. 2016.PubMedCrossRef L. P. de B. Sampaio, Ketogenic diet for epilepsy treatment, Arq Neuropsiquiatr., vol. 74, n.o 10, pp. 842–848, oct. 2016.PubMedCrossRef
22.
go back to reference E. H. Kossoff y J. R. McGrogan, Worldwide use of the ketogenic diet, Epilepsia, vol. 46, n.o 2, pp. 280–289, feb. 2005.PubMedCrossRef E. H. Kossoff y J. R. McGrogan, Worldwide use of the ketogenic diet, Epilepsia, vol. 46, n.o 2, pp. 280–289, feb. 2005.PubMedCrossRef
23.
go back to reference J. C. Mavropoulos, W. S. Yancy, J. Hepburn, y E. C. Westman, The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study, Nutr Metab., vol. 2, p. 35, dic. 2005. J. C. Mavropoulos, W. S. Yancy, J. Hepburn, y E. C. Westman, The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study, Nutr Metab., vol. 2, p. 35, dic. 2005.
25.
go back to reference B. J. Brehm, R. J. Seeley, S. R. Daniels, y D. A. D’Alessio, A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women, J Clin Endocrinol Metab., vol. 88, n.o 4, pp. 1617–1623, abr. 2003.CrossRef B. J. Brehm, R. J. Seeley, S. R. Daniels, y D. A. D’Alessio, A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women, J Clin Endocrinol Metab., vol. 88, n.o 4, pp. 1617–1623, abr. 2003.CrossRef
26.
go back to reference R. Alessandro et al., Effects of twenty days of the ketogenic diet on metabolic and respiratory parameters in healthy subjects, Lung, vol. 193, n.o 6, pp. 939–945, dic. 2015. R. Alessandro et al., Effects of twenty days of the ketogenic diet on metabolic and respiratory parameters in healthy subjects, Lung, vol. 193, n.o 6, pp. 939–945, dic. 2015.
27.
go back to reference V. D. Longo y M. P. Mattson, Fasting: molecular mechanisms and clinical applications, Cell Metab., vol. 19, n.o 2, pp. 181–192, feb. 2014. V. D. Longo y M. P. Mattson, Fasting: molecular mechanisms and clinical applications, Cell Metab., vol. 19, n.o 2, pp. 181–192, feb. 2014.
28.
go back to reference A. Prabhakar et al., Acetone as biomarker for ketosis buildup capability - a study in healthy individuals under combined high fat and starvation diets, Nutr J., vol. 14, n.o 1, dic. 2015. A. Prabhakar et al., Acetone as biomarker for ketosis buildup capability - a study in healthy individuals under combined high fat and starvation diets, Nutr J., vol. 14, n.o 1, dic. 2015.
29.
go back to reference P. J. Cox y K. Clarke, Acute nutritional ketosis: implications for exercise performance and metabolism, Extreme Physiol Med., vol. 3, n.o 1, p. 17, 2014. P. J. Cox y K. Clarke, Acute nutritional ketosis: implications for exercise performance and metabolism, Extreme Physiol Med., vol. 3, n.o 1, p. 17, 2014.
30.
go back to reference M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, y R. L. Veech, A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease, Alzheimers Dement., vol. 11, n.o 1, pp. 99–103, ene. 2015.CrossRef M. T. Newport, T. B. VanItallie, Y. Kashiwaya, M. T. King, y R. L. Veech, A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease, Alzheimers Dement., vol. 11, n.o 1, pp. 99–103, ene. 2015.CrossRef
31.
go back to reference W. Kephart et al., The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats, Nutrients, vol. 9, n.o 9, p. 1019, sep. 2017. W. Kephart et al., The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats, Nutrients, vol. 9, n.o 9, p. 1019, sep. 2017.
33.
go back to reference C. A. Olson, H. E. Vuong, J. M. Yano, Q. Y. Liang, D. J. Nusbaum, y E. Y. Hsiao, The gut microbiota mediates the anti-seizure effects of the ketogenic diet, Cell, vol. 173, n.o 7, pp. 1728–1741.e13, jun. 2018. C. A. Olson, H. E. Vuong, J. M. Yano, Q. Y. Liang, D. J. Nusbaum, y E. Y. Hsiao, The gut microbiota mediates the anti-seizure effects of the ketogenic diet, Cell, vol. 173, n.o 7, pp. 1728–1741.e13, jun. 2018.
34.
go back to reference A. Paoli, G. Bosco, E. M. Camporesi, y D. Mangar, Ketosis, ketogenic diet and food intake control: a complex relationship, Front Psychol., vol. 6, feb. 2015. A. Paoli, G. Bosco, E. M. Camporesi, y D. Mangar, Ketosis, ketogenic diet and food intake control: a complex relationship, Front Psychol., vol. 6, feb. 2015.
35.
go back to reference C. Newell, M. R. Bomhof, R. A. Reimer, D. S. Hittel, J. M. Rho, y J. Shearer, Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder, Mol Autism, vol. 7, n.o 1, dic. 2016. C. Newell, M. R. Bomhof, R. A. Reimer, D. S. Hittel, J. M. Rho, y J. Shearer, Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder, Mol Autism, vol. 7, n.o 1, dic. 2016.
36.
go back to reference A. Swidsinski et al., Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet, Front Microbiol., vol. 8, jun. 2017. A. Swidsinski et al., Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet, Front Microbiol., vol. 8, jun. 2017.
37.
go back to reference J. W. Wheless, History and origin of the ketogenic diet, en Epilepsy and the ketogenic diet, C. E. Stafstrom y J. M. Rho, Eds. Totowa, NJ: Humana Press, 2004, pp. 31–50. J. W. Wheless, History and origin of the ketogenic diet, en Epilepsy and the ketogenic diet, C. E. Stafstrom y J. M. Rho, Eds. Totowa, NJ: Humana Press, 2004, pp. 31–50.
38.
go back to reference E. G. Neal et al., The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial, Lancet Neurol., vol. 7, n.o 6, pp. 500–506, jun. 2008.PubMedCrossRef E. G. Neal et al., The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial, Lancet Neurol., vol. 7, n.o 6, pp. 500–506, jun. 2008.PubMedCrossRef
39.
go back to reference G. Xie et al., Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy, World J Gastroenterol., vol. 23, n.o 33, pp. 6164–6171, sep. 2017.PubMedPubMedCentralCrossRef G. Xie et al., Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy, World J Gastroenterol., vol. 23, n.o 33, pp. 6164–6171, sep. 2017.PubMedPubMedCentralCrossRef
40.
go back to reference T. Hampton, Gut microbes may account for the anti-seizure effects of the ketogenic diet, JAMA, vol. 320, n.o 13, p. 1307, oct. 2018. T. Hampton, Gut microbes may account for the anti-seizure effects of the ketogenic diet, JAMA, vol. 320, n.o 13, p. 1307, oct. 2018.
41.
go back to reference A. Tagliabue et al., Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: a 3-month prospective observational study, Clin Nutr ESPEN, vol. 17, pp. 33–37, feb. 2017.PubMedCrossRef A. Tagliabue et al., Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: a 3-month prospective observational study, Clin Nutr ESPEN, vol. 17, pp. 33–37, feb. 2017.PubMedCrossRef
42.
go back to reference B. Ott et al., Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women, Sci Rep., vol. 7, n.o 1, dic. 2017. B. Ott et al., Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women, Sci Rep., vol. 7, n.o 1, dic. 2017.
43.
go back to reference K. Duszka et al., Complementary intestinal mucosa and microbiota responses to caloric restriction, Sci Rep., vol. 8, n.o 1, dic. 2018. K. Duszka et al., Complementary intestinal mucosa and microbiota responses to caloric restriction, Sci Rep., vol. 8, n.o 1, dic. 2018.
44.
go back to reference A. Mukherji, A. Kobiita, T. Ye, y P. Chambon, Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs, Cell, vol. 153, n.o 4, pp. 812–827, may 2013. A. Mukherji, A. Kobiita, T. Ye, y P. Chambon, Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs, Cell, vol. 153, n.o 4, pp. 812–827, may 2013.
45.
go back to reference R. E. Patterson y D. D. Sears, Metabolic effects of intermittent fasting, Annu Rev Nutr., vol. 37, n.o 1, pp. 371–393, ago. 2017.PubMedCrossRef R. E. Patterson y D. D. Sears, Metabolic effects of intermittent fasting, Annu Rev Nutr., vol. 37, n.o 1, pp. 371–393, ago. 2017.PubMedCrossRef
46.
go back to reference M. Remely, B. Hippe, I. Geretschlaeger, S. Stegmayer, I. Hoefinger, y A. Haslberger, Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study, Wien Klin Wochenschr., vol. 127, n.o 9–10, pp. 394–398, may 2015. M. Remely, B. Hippe, I. Geretschlaeger, S. Stegmayer, I. Hoefinger, y A. Haslberger, Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study, Wien Klin Wochenschr., vol. 127, n.o 9–10, pp. 394–398, may 2015.
47.
go back to reference K. Sonoyama et al., Response of gut microbiota to fasting and hibernation in Syrian hamsters, Appl Environ Microbiol., vol. 75, n.o 20, pp. 6451–6456, oct. 2009.PubMedPubMedCentralCrossRef K. Sonoyama et al., Response of gut microbiota to fasting and hibernation in Syrian hamsters, Appl Environ Microbiol., vol. 75, n.o 20, pp. 6451–6456, oct. 2009.PubMedPubMedCentralCrossRef
48.
go back to reference S. Fabbiano et al., Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements, Cell Metab., vol. 28, n.o 6, pp. 907–921.e7, dic. 2018.PubMedPubMedCentralCrossRef S. Fabbiano et al., Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements, Cell Metab., vol. 28, n.o 6, pp. 907–921.e7, dic. 2018.PubMedPubMedCentralCrossRef
49.
go back to reference D. G. Cotter, R. C. Schugar, y P. A. Crawford, Ketone body metabolism and cardiovascular disease, AJP Heart Circ Physiol., vol. 304, n.o 8, pp. H1060-H1076, abr. 2013.PubMedPubMedCentralCrossRef D. G. Cotter, R. C. Schugar, y P. A. Crawford, Ketone body metabolism and cardiovascular disease, AJP Heart Circ Physiol., vol. 304, n.o 8, pp. H1060-H1076, abr. 2013.PubMedPubMedCentralCrossRef
50.
go back to reference P. Puchalska y P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics, Cell Metab., vol. 25, n.o 2, pp. 262–284, feb. 2017. P. Puchalska y P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics, Cell Metab., vol. 25, n.o 2, pp. 262–284, feb. 2017.
51.
go back to reference L. Gupta, D. Khandelwal, S. Kalra, P. Gupta, D. Dutta, y S. Aggarwal, Ketogenic diet in endocrine disorders: Current perspectives, J Postgrad Med., vol. 63, n.o 4, p. 242, 2017.PubMedPubMedCentralCrossRef L. Gupta, D. Khandelwal, S. Kalra, P. Gupta, D. Dutta, y S. Aggarwal, Ketogenic diet in endocrine disorders: Current perspectives, J Postgrad Med., vol. 63, n.o 4, p. 242, 2017.PubMedPubMedCentralCrossRef
52.
go back to reference Bolla, Caretto, Laurenzi, Scavini, y Piemonti, Low-carb and ketogenic diets in type 1 and type 2 diabetes, Nutrients, vol. 11, n.o 5, p. 962, abr. 2019. Bolla, Caretto, Laurenzi, Scavini, y Piemonti, Low-carb and ketogenic diets in type 1 and type 2 diabetes, Nutrients, vol. 11, n.o 5, p. 962, abr. 2019.
53.
go back to reference M. Sampson et al., β-Hydroxybutyrate improves β-cell mitochondrial function and survival, J Insul Resist., vol. 1, n.o 1, ago. 2017. M. Sampson et al., β-Hydroxybutyrate improves β-cell mitochondrial function and survival, J Insul Resist., vol. 1, n.o 1, ago. 2017.
54.
go back to reference J. K. Nicholson et al., Host-gut microbiota metabolic interactions, Science, vol. 336, n.o 6086, pp. 1262–1267, jun. 2012.PubMedCrossRef J. K. Nicholson et al., Host-gut microbiota metabolic interactions, Science, vol. 336, n.o 6086, pp. 1262–1267, jun. 2012.PubMedCrossRef
55.
go back to reference T. Shimazu et al., Suppression of oxidative stress by -Hydroxybutyrate, an endogenous histone deacetylase inhibitor, Science, vol. 339, n.o 6116, pp. 211–214, ene. 2013.PubMedPubMedCentralCrossRef T. Shimazu et al., Suppression of oxidative stress by -Hydroxybutyrate, an endogenous histone deacetylase inhibitor, Science, vol. 339, n.o 6116, pp. 211–214, ene. 2013.PubMedPubMedCentralCrossRef
56.
go back to reference J. S. Benjamin et al., A ketogenic diet rescues hippocampal memory defects in a mouse model of kabuki syndrome, Proc Natl Acad Sci U S A., vol. 114, n.o 1, pp. 125–130, ene. 2017.CrossRef J. S. Benjamin et al., A ketogenic diet rescues hippocampal memory defects in a mouse model of kabuki syndrome, Proc Natl Acad Sci U S A., vol. 114, n.o 1, pp. 125–130, ene. 2017.CrossRef
57.
go back to reference M. Shirahata, W.-Y. Tang, y E. W. Kostuk, A short-term fasting in neonates induces breathing instability and epigenetic modification in the carotid body, en Arterial chemoreceptors in physiology and pathophysiology, vol. 860, C. Peers, P. Kumar, C. Wyatt, E. Gauda, C. A. Nurse, y N. Prabhakar, Eds. Cham: Springer International Publishing, 2015, pp. 187–193. M. Shirahata, W.-Y. Tang, y E. W. Kostuk, A short-term fasting in neonates induces breathing instability and epigenetic modification in the carotid body, en Arterial chemoreceptors in physiology and pathophysiology, vol. 860, C. Peers, P. Kumar, C. Wyatt, E. Gauda, C. A. Nurse, y N. Prabhakar, Eds. Cham: Springer International Publishing, 2015, pp. 187–193.
58.
go back to reference D. M. Jaworski, A. M. A. Namboodiri, y J. R. Moffett, Acetate as a metabolic and epigenetic modifier of Cancer therapy: Acetate as a modifier of cancer therapy, J Cell Biochem., vol. 117, n.o 3, pp. 574–588, mar. 2016.PubMedCrossRef D. M. Jaworski, A. M. A. Namboodiri, y J. R. Moffett, Acetate as a metabolic and epigenetic modifier of Cancer therapy: Acetate as a modifier of cancer therapy, J Cell Biochem., vol. 117, n.o 3, pp. 574–588, mar. 2016.PubMedCrossRef
59.
go back to reference M. I. Bhat y R. Kapila, Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals, Nutr Rev., vol. 75, n.o 5, pp. 374–389, may 2017.PubMedCrossRef M. I. Bhat y R. Kapila, Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals, Nutr Rev., vol. 75, n.o 5, pp. 374–389, may 2017.PubMedCrossRef
60.
go back to reference B. Afsar, N. D. Vaziri, G. Aslan, K. Tarim, y M. Kanbay, Gut hormones and gut microbiota: implications for kidney function and hypertension, J Am Soc Hypertens., vol. 10, n.o 12, pp. 954–961, dic. 2016.PubMedCrossRef B. Afsar, N. D. Vaziri, G. Aslan, K. Tarim, y M. Kanbay, Gut hormones and gut microbiota: implications for kidney function and hypertension, J Am Soc Hypertens., vol. 10, n.o 12, pp. 954–961, dic. 2016.PubMedCrossRef
61.
go back to reference J. M. Baker, L. Al-Nakkash, y M. M. Herbst-Kralovetz, Estrogen–gut microbiome axis: physiological and clinical implications, Maturitas, vol. 103, pp. 45–53, sep. 2017.PubMedCrossRef J. M. Baker, L. Al-Nakkash, y M. M. Herbst-Kralovetz, Estrogen–gut microbiome axis: physiological and clinical implications, Maturitas, vol. 103, pp. 45–53, sep. 2017.PubMedCrossRef
62.
go back to reference P. Sumithran et al., Ketosis and appetite-mediating nutrients and hormones after weight loss, Eur J Clin Nutr., vol. 67, n.o 7, pp. 759–764, jul. 2013.PubMedCrossRef P. Sumithran et al., Ketosis and appetite-mediating nutrients and hormones after weight loss, Eur J Clin Nutr., vol. 67, n.o 7, pp. 759–764, jul. 2013.PubMedCrossRef
63.
go back to reference A. Lyngstad et al., Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite, Am J Clin Nutr., vol. 109, n.o 6, pp. 1511–1518, jun. 2019.PubMedPubMedCentralCrossRef A. Lyngstad et al., Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite, Am J Clin Nutr., vol. 109, n.o 6, pp. 1511–1518, jun. 2019.PubMedPubMedCentralCrossRef
64.
go back to reference D. N. Ruskin, J. A. Fortin, S. N. Bisnauth, y S. A. Masino, Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse, Physiol Behav., vol. 168, pp. 138–145, ene. 2017.CrossRef D. N. Ruskin, J. A. Fortin, S. N. Bisnauth, y S. A. Masino, Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse, Physiol Behav., vol. 168, pp. 138–145, ene. 2017.CrossRef
65.
go back to reference A. Castro et al., Effect of a very low-calorie ketogenic diet on food and alcohol cravings, physical and sexual activity, sleep disturbances, and quality of life in obese patients, Nutrients, vol. 10, n.o 10, p. 1348, sep. 2018. A. Castro et al., Effect of a very low-calorie ketogenic diet on food and alcohol cravings, physical and sexual activity, sleep disturbances, and quality of life in obese patients, Nutrients, vol. 10, n.o 10, p. 1348, sep. 2018.
66.
go back to reference K. A. Krautkramer, R. S. Dhillon, J. M. Denu, y H. V. Carey, Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin, Transl Res., vol. 189, pp. 30–50, nov. 2017.PubMedPubMedCentralCrossRef K. A. Krautkramer, R. S. Dhillon, J. M. Denu, y H. V. Carey, Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin, Transl Res., vol. 189, pp. 30–50, nov. 2017.PubMedPubMedCentralCrossRef
67.
go back to reference S. K. Shukla et al., Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia, Cancer Metab., vol. 2, n.o 1, p. 18, 2014.CrossRef S. K. Shukla et al., Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia, Cancer Metab., vol. 2, n.o 1, p. 18, 2014.CrossRef
68.
go back to reference H. M. Dashti et al., Long-term effects of a ketogenic diet in obese patients, Exp Clin Cardiol., vol. 9, n.o 3, pp. 200–205, 2004. H. M. Dashti et al., Long-term effects of a ketogenic diet in obese patients, Exp Clin Cardiol., vol. 9, n.o 3, pp. 200–205, 2004.
69.
go back to reference A. Persynaki, S. Karras, y C. Pichard, Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review, Nutrition, vol. 35, pp. 14–20, mar. 2017. A. Persynaki, S. Karras, y C. Pichard, Unraveling the metabolic health benefits of fasting related to religious beliefs: a narrative review, Nutrition, vol. 35, pp. 14–20, mar. 2017.
70.
go back to reference J. T. Haas y B. Staels, Fasting the microbiota to improve metabolism?, Cell Metab., vol. 26, n.o 4, pp. 584–585, oct. 2017.PubMedCrossRef J. T. Haas y B. Staels, Fasting the microbiota to improve metabolism?, Cell Metab., vol. 26, n.o 4, pp. 584–585, oct. 2017.PubMedCrossRef
71.
go back to reference S. Srivastava et al., Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet, FASEB J., vol. 26, n.o 6, pp. 2351–2362, jun. 2012. S. Srivastava et al., Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet, FASEB J., vol. 26, n.o 6, pp. 2351–2362, jun. 2012.
73.
go back to reference A. Paoli, A. Rubini, J. S. Volek, y K. A. Grimaldi, Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets, Eur J Clin Nutr., vol. 67, n.o 8, pp. 789–796, ago. 2013.PubMedPubMedCentralCrossRef A. Paoli, A. Rubini, J. S. Volek, y K. A. Grimaldi, Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets, Eur J Clin Nutr., vol. 67, n.o 8, pp. 789–796, ago. 2013.PubMedPubMedCentralCrossRef
74.
go back to reference J. S. Volek et al., Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet, Lipids, vol. 44, n.o 4, pp. 297–309, abr. 2009. J. S. Volek et al., Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet, Lipids, vol. 44, n.o 4, pp. 297–309, abr. 2009.
75.
go back to reference A. M. Johnstone, G. W. Horgan, S. D. Murison, D. M. Bremner, y G. E. Lobley, Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum, Am J Clin Nutr., vol. 87, n.o 1, pp. 44–55, ene. 2008.PubMedCrossRef A. M. Johnstone, G. W. Horgan, S. D. Murison, D. M. Bremner, y G. E. Lobley, Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum, Am J Clin Nutr., vol. 87, n.o 1, pp. 44–55, ene. 2008.PubMedCrossRef
76.
go back to reference H. M. Francis y R. J. Stevenson, Potential for diet to prevent and remediate cognitive deficits in neurological disorders, Nutr Rev., ene. 2018. H. M. Francis y R. J. Stevenson, Potential for diet to prevent and remediate cognitive deficits in neurological disorders, Nutr Rev., ene. 2018.
77.
go back to reference S. J. Koppel y R. H. Swerdlow, Neuroketotherapeutics: a modern review of a century-old therapy, Neurochem Int., jun. 2017. S. J. Koppel y R. H. Swerdlow, Neuroketotherapeutics: a modern review of a century-old therapy, Neurochem Int., jun. 2017.
78.
go back to reference C. Pellegrini, L. Antonioli, R. Colucci, C. Blandizzi, y M. Fornai, Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?, Acta Neuropathol. (Berl.), vol. 136, n.o 3, pp. 345–361, sep. 2018.PubMedCrossRef C. Pellegrini, L. Antonioli, R. Colucci, C. Blandizzi, y M. Fornai, Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?, Acta Neuropathol. (Berl.), vol. 136, n.o 3, pp. 345–361, sep. 2018.PubMedCrossRef
79.
go back to reference Q. Li, Y. Han, A. B. C. Dy, y R. J. Hagerman, The gut microbiota and autism Spectrum disorders, front. Cell Neurosci., vol. 11, abr. 2017. Q. Li, Y. Han, A. B. C. Dy, y R. J. Hagerman, The gut microbiota and autism Spectrum disorders, front. Cell Neurosci., vol. 11, abr. 2017.
80.
go back to reference P. A. Crawford et al., Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation, Proc Natl Acad Sci., vol. 106, n.o 27, pp. 11276–11281, jul. 2009.CrossRef P. A. Crawford et al., Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation, Proc Natl Acad Sci., vol. 106, n.o 27, pp. 11276–11281, jul. 2009.CrossRef
81.
go back to reference H.-Y. Chung y Y. K. Park, Rationale, feasibility and acceptability of ketogenic diet for Cancer treatment, J Cancer Prev., vol. 22, n.o 3, pp. 127–134, sep. 2017.PubMedPubMedCentralCrossRef H.-Y. Chung y Y. K. Park, Rationale, feasibility and acceptability of ketogenic diet for Cancer treatment, J Cancer Prev., vol. 22, n.o 3, pp. 127–134, sep. 2017.PubMedPubMedCentralCrossRef
82.
go back to reference Kentaro Nakamura, Hidekazu Tonouchi, Akina Sasayama, y Kinya Ashida, A ketogenic formula prevents tumor progression and Cancer Cachexia by attenuating systemic inflammation in Colon 26 tumor-bearing mice, Nutrients, vol. 10, n.o 2, p. 206, feb. 2018. Kentaro Nakamura, Hidekazu Tonouchi, Akina Sasayama, y Kinya Ashida, A ketogenic formula prevents tumor progression and Cancer Cachexia by attenuating systemic inflammation in Colon 26 tumor-bearing mice, Nutrients, vol. 10, n.o 2, p. 206, feb. 2018.
83.
go back to reference C. L. P. Oliveira, S. Mattingly, R. Schirrmacher, M. B. Sawyer, E. J. Fine, y C. M. Prado, A nutritional perspective of ketogenic diet in Cancer: a narrative review, J Acad Nutr Diet., mar. 2017. C. L. P. Oliveira, S. Mattingly, R. Schirrmacher, M. B. Sawyer, E. J. Fine, y C. M. Prado, A nutritional perspective of ketogenic diet in Cancer: a narrative review, J Acad Nutr Diet., mar. 2017.
84.
go back to reference S. Khodadadi et al., Tumor cells growth and survival time with the ketogenic diet in animal models: a systematic review, Int J Prev Med., vol. 8, n.o 1, p. 35, 2017.PubMedPubMedCentralCrossRef S. Khodadadi et al., Tumor cells growth and survival time with the ketogenic diet in animal models: a systematic review, Int J Prev Med., vol. 8, n.o 1, p. 35, 2017.PubMedPubMedCentralCrossRef
85.
go back to reference T. N. Seyfried, M. A. Kiebish, J. Marsh, L. M. Shelton, L. C. Huysentruyt, y P. Mukherjee, Metabolic management of brain cancer, Biochim Biophys Acta BBA - Bioenerg., vol. 1807, n.o 6, pp. 577–594, jun. 2011. T. N. Seyfried, M. A. Kiebish, J. Marsh, L. M. Shelton, L. C. Huysentruyt, y P. Mukherjee, Metabolic management of brain cancer, Biochim Biophys Acta BBA - Bioenerg., vol. 1807, n.o 6, pp. 577–594, jun. 2011.
86.
go back to reference K. Vipperla y S. J. O’Keefe, Diet, microbiota, and dysbiosis: a ‘recipe’ for colorectal cancer, Food Funct., vol. 7, n.o 4, pp. 1731–1740, 2016.CrossRef K. Vipperla y S. J. O’Keefe, Diet, microbiota, and dysbiosis: a ‘recipe’ for colorectal cancer, Food Funct., vol. 7, n.o 4, pp. 1731–1740, 2016.CrossRef
87.
go back to reference J. Yang y J. Yu, The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get, Protein Cell, vol. 9, n.o 5, pp. 474–487, may 2018. J. Yang y J. Yu, The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get, Protein Cell, vol. 9, n.o 5, pp. 474–487, may 2018.
88.
go back to reference R. J. Klement y V. Pazienza, Impact of different types of diet on gut microbiota profiles and Cancer prevention and treatment, Medicina (Mex), vol. 55, n.o 4, p. 84, mar. 2019.PubMedCentralCrossRef R. J. Klement y V. Pazienza, Impact of different types of diet on gut microbiota profiles and Cancer prevention and treatment, Medicina (Mex), vol. 55, n.o 4, p. 84, mar. 2019.PubMedCentralCrossRef
89.
go back to reference S. J. Bultman, Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer, Mol Nutr Food Res., vol. 61, n.o 1, p. 1500902, ene. 2017.CrossRef S. J. Bultman, Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer, Mol Nutr Food Res., vol. 61, n.o 1, p. 1500902, ene. 2017.CrossRef
90.
go back to reference V. Gopalakrishnan, B. A. Helmink, C. N. Spencer, A. Reuben, y J. A. Wargo, The influence of the gut microbiome on Cancer, immunity, and Cancer immunotherapy, Cancer Cell, vol. 33, n.o 4, pp. 570–580, abr. 2018. V. Gopalakrishnan, B. A. Helmink, C. N. Spencer, A. Reuben, y J. A. Wargo, The influence of the gut microbiome on Cancer, immunity, and Cancer immunotherapy, Cancer Cell, vol. 33, n.o 4, pp. 570–580, abr. 2018.
91.
go back to reference S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones, y L. C. Costantini, Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial, Nutr. Metab., vol. 6, n.o 1, p. 31, 2009.CrossRef S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones, y L. C. Costantini, Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial, Nutr. Metab., vol. 6, n.o 1, p. 31, 2009.CrossRef
92.
go back to reference L. C. Costantini, L. J. Barr, J. L. Vogel, y S. T. Henderson, Hypometabolism as a therapeutic target in Alzheimer’s disease, BMC Neurosci., vol. 9, n.o Suppl 2, p. S16, 2008. L. C. Costantini, L. J. Barr, J. L. Vogel, y S. T. Henderson, Hypometabolism as a therapeutic target in Alzheimer’s disease, BMC Neurosci., vol. 9, n.o Suppl 2, p. S16, 2008.
93.
go back to reference S. Westfall, N. Lomis, I. Kahouli, S. Y. Dia, S. P. Singh, y S. Prakash, Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis, Cell Mol Life Sci., vol. 74, n.o 20, pp. 3769–3787, oct. 2017.PubMedCrossRef S. Westfall, N. Lomis, I. Kahouli, S. Y. Dia, S. P. Singh, y S. Prakash, Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis, Cell Mol Life Sci., vol. 74, n.o 20, pp. 3769–3787, oct. 2017.PubMedCrossRef
94.
go back to reference P. R. Huttenlocher, A. J. Wilbourn, y J. M. Signore, Medium-chain triglycerides as a therapy for intractable childhood epilepsy, Neurology, vol. 21, n.o 11, pp. 1097–1103, nov. 1971.PubMedCrossRef P. R. Huttenlocher, A. J. Wilbourn, y J. M. Signore, Medium-chain triglycerides as a therapy for intractable childhood epilepsy, Neurology, vol. 21, n.o 11, pp. 1097–1103, nov. 1971.PubMedCrossRef
95.
go back to reference J. W. Wheless, The ketogenic diet: an effective medical therapy with side effects, J Child Neurol., vol. 16, n.o 9, pp. 633–635, sep. 2001.PubMedCrossRef J. W. Wheless, The ketogenic diet: an effective medical therapy with side effects, J Child Neurol., vol. 16, n.o 9, pp. 633–635, sep. 2001.PubMedCrossRef
96.
go back to reference A. G. C. Bergqvist, Long-term monitoring of the ketogenic diet: Do’s and Don’ts, Epilepsy Res., vol. 100, n.o 3, pp. 261–266, jul. 2012.PubMedCrossRef A. G. C. Bergqvist, Long-term monitoring of the ketogenic diet: Do’s and Don’ts, Epilepsy Res., vol. 100, n.o 3, pp. 261–266, jul. 2012.PubMedCrossRef
Metadata
Title
Keto microbiota: A powerful contributor to host disease recovery
Authors
Amanda Cabrera-Mulero
Alberto Tinahones
Borja Bandera
Isabel Moreno-Indias
Manuel Macías-González
Francisco J. Tinahones
Publication date
01-12-2019
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 4/2019
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09518-8

Other articles of this Issue 4/2019

Reviews in Endocrine and Metabolic Disorders 4/2019 Go to the issue