Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 3/2019

01-09-2019 | Obesity

Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease

Authors: Syeda Momna Ishtiaq, Haroon Rashid, Zulfia Hussain, Muhammad Imran Arshad, Junaid Ali Khan

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 3/2019

Login to get access

Abstract

Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic peroxisome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve obesity and obesity-associated NAFLD.
Literature
1.
go back to reference Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8.PubMed Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8.PubMed
2.
go back to reference Hussain Z, Khan JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10(10):940–4.PubMed Hussain Z, Khan JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10(10):940–4.PubMed
3.
go back to reference Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentral Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentral
4.
go back to reference Cowerd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, et al. Adiponectin lowers glucose production by increasing SOGA. Am J Pathol. 2010;177(4):1936–45.PubMedPubMedCentral Cowerd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, et al. Adiponectin lowers glucose production by increasing SOGA. Am J Pathol. 2010;177(4):1936–45.PubMedPubMedCentral
5.
go back to reference Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, et al. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep. 2018;8(1):9858.PubMedPubMedCentral Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, et al. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep. 2018;8(1):9858.PubMedPubMedCentral
6.
go back to reference Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedPubMedCentral Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedPubMedCentral
7.
go back to reference Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009;17(5):941–64.PubMed Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009;17(5):941–64.PubMed
9.
go back to reference Ghowsi M, Khazali H, Sisakhtnezhad S. Evaluation of TNF-α and IL-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci. 2018;21(2):165–74.PubMedPubMedCentral Ghowsi M, Khazali H, Sisakhtnezhad S. Evaluation of TNF-α and IL-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci. 2018;21(2):165–74.PubMedPubMedCentral
12.
go back to reference Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.PubMed Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.PubMed
13.
go back to reference Vajro P, Paolella G, Fasano A. Microbiota and gut–liver Axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8.PubMedPubMedCentral Vajro P, Paolella G, Fasano A. Microbiota and gut–liver Axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8.PubMedPubMedCentral
14.
15.
go back to reference Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepat Mon. 2015;15(1):e23941.PubMed Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepat Mon. 2015;15(1):e23941.PubMed
16.
go back to reference Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and Immunohistochemical effects of metformin HCl-loaded beads formulations in Streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats. Pak Vet J. 2018;38(2):127–32. Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and Immunohistochemical effects of metformin HCl-loaded beads formulations in Streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats. Pak Vet J. 2018;38(2):127–32.
17.
go back to reference Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: current perspectives. Clin Res Hepatol Gastroenterol. 2017;41(1):17–24.PubMed Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: current perspectives. Clin Res Hepatol Gastroenterol. 2017;41(1):17–24.PubMed
18.
go back to reference Mehmood K, Zhang H, Iqbal MK, Rehman MU. Li kun, Huang S, Shahzad M, Nabi F, Iqbal M, Li J. Tetramethylpyrazine mitigates toxicity and liver oxidative stress in Tibial dyschondroplasia chickens. Pak Vet J. 2018;38(1):76–80. Mehmood K, Zhang H, Iqbal MK, Rehman MU. Li kun, Huang S, Shahzad M, Nabi F, Iqbal M, Li J. Tetramethylpyrazine mitigates toxicity and liver oxidative stress in Tibial dyschondroplasia chickens. Pak Vet J. 2018;38(1):76–80.
19.
go back to reference Noureen S, Riaz A, Saif A, Arshad M, Qamar MF, Arshad N. Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: a comparison. Pak Vet J. 2018;38(3):306–10. Noureen S, Riaz A, Saif A, Arshad M, Qamar MF, Arshad N. Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: a comparison. Pak Vet J. 2018;38(3):306–10.
20.
go back to reference Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38(3):311–5. Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38(3):311–5.
21.
go back to reference Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed Pharmacother. 2018;106:285–91.PubMed Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed Pharmacother. 2018;106:285–91.PubMed
22.
go back to reference Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on Spermatozoas. Int J Endocrinol. 2018;2018:1–11. Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on Spermatozoas. Int J Endocrinol. 2018;2018:1–11.
23.
go back to reference Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.PubMed Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.PubMed
24.
go back to reference Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol. 2018;63:9–13.PubMed Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol. 2018;63:9–13.PubMed
25.
go back to reference Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol. 2013;380:55–64.PubMedPubMedCentral Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol. 2013;380:55–64.PubMedPubMedCentral
26.
go back to reference Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet? Annu Rev Pharmacol Toxicol. 2016;56(1):605–26.PubMedPubMedCentral Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet? Annu Rev Pharmacol Toxicol. 2016;56(1):605–26.PubMedPubMedCentral
27.
go back to reference Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentral Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentral
28.
go back to reference Trauner M, Halilbasic E. Nuclear receptors as new perspective for the Management of Liver Diseases. Gastroenterology. 2011;140(4):1120–5.PubMed Trauner M, Halilbasic E. Nuclear receptors as new perspective for the Management of Liver Diseases. Gastroenterology. 2011;140(4):1120–5.PubMed
29.
go back to reference Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011;53(3):1023–34.PubMed Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011;53(3):1023–34.PubMed
30.
go back to reference Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by acetaminophen in mice: the importance of oxidative stress suppression. Adv Pharm Bull. 2018;8(2):331–9.PubMedPubMedCentral Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by acetaminophen in mice: the importance of oxidative stress suppression. Adv Pharm Bull. 2018;8(2):331–9.PubMedPubMedCentral
31.
go back to reference Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR-γ agonist alleviates liver and spleen pathology via inducing Treg cells during Schistosoma japonicum infection. J Immunol Res. 2018;2018:6398078.PubMedPubMedCentral Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR-γ agonist alleviates liver and spleen pathology via inducing Treg cells during Schistosoma japonicum infection. J Immunol Res. 2018;2018:6398078.PubMedPubMedCentral
32.
go back to reference Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One. 2013;8(4):e62253.PubMedPubMedCentral Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One. 2013;8(4):e62253.PubMedPubMedCentral
33.
go back to reference Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 2018;474:227–37.PubMed Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 2018;474:227–37.PubMed
34.
go back to reference Zhu P, Huang W, Li J, Ma X, Hu M, Wang Y, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92(2):1525–36.PubMed Zhu P, Huang W, Li J, Ma X, Hu M, Wang Y, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92(2):1525–36.PubMed
35.
go back to reference Reda E, Hassaneen S, El-Abhar HS. Novel trajectories of bromocriptine antidiabetic action: leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol. 2018;9:771.PubMedPubMedCentral Reda E, Hassaneen S, El-Abhar HS. Novel trajectories of bromocriptine antidiabetic action: leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol. 2018;9:771.PubMedPubMedCentral
36.
go back to reference Parvin R, Noro E, Saito-Hakoda A, Shimada H, Suzuki S, Shimizu K, et al. Inhibitory effects of a novel PPAR-γ agonist MEKT1 on Pomc expression/ACTH secretion in AtT20 cells. PPAR Res. 2018;5346272. Parvin R, Noro E, Saito-Hakoda A, Shimada H, Suzuki S, Shimizu K, et al. Inhibitory effects of a novel PPAR-γ agonist MEKT1 on Pomc expression/ACTH secretion in AtT20 cells. PPAR Res. 2018;5346272.
37.
go back to reference Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75.PubMedPubMedCentral Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75.PubMedPubMedCentral
38.
go back to reference Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, et al. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61(10):2235–46.PubMedCentral Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, et al. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61(10):2235–46.PubMedCentral
39.
go back to reference Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2018;498(4):1037–44.PubMed Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2018;498(4):1037–44.PubMed
40.
go back to reference Raso GM, Simeoli R, Russo R, Iacono A, Santoro A, Paciello O, Ferrante MC, Canani RB, Calignano A, Meli R. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. Alisi A, editor. PLoS ONE. 2013;8(7):e68626. Raso GM, Simeoli R, Russo R, Iacono A, Santoro A, Paciello O, Ferrante MC, Canani RB, Calignano A, Meli R. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. Alisi A, editor. PLoS ONE. 2013;8(7):e68626.
42.
go back to reference Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.PubMed Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.PubMed
43.
go back to reference Sayeed M, Gautam S, Verma DP, Afshan T, Kumari T, Srivastava AK, et al. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–23.PubMedPubMedCentral Sayeed M, Gautam S, Verma DP, Afshan T, Kumari T, Srivastava AK, et al. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–23.PubMedPubMedCentral
44.
go back to reference Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMed Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMed
45.
go back to reference Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.PubMed Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.PubMed
46.
go back to reference Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145–50.PubMed Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145–50.PubMed
47.
go back to reference Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015;27(3):532–44.PubMed Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015;27(3):532–44.PubMed
48.
go back to reference Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver diseases. Diabetes Metab. 2014;40(2):95–107.PubMed Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver diseases. Diabetes Metab. 2014;40(2):95–107.PubMed
49.
go back to reference Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13(8):e0201499.PubMedPubMedCentral Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13(8):e0201499.PubMedPubMedCentral
50.
go back to reference Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, De la Peña S, Arroyo Helguera OE. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018;35(4):841–6.PubMed Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, De la Peña S, Arroyo Helguera OE. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018;35(4):841–6.PubMed
51.
go back to reference Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.PubMed Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.PubMed
52.
go back to reference Sacerdoti D, Singh SP, Schragenheim J, Bellner L, Vanella L, Raffaele M, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;3484107. https://doi.org/10.1155/2018/3484107. Sacerdoti D, Singh SP, Schragenheim J, Bellner L, Vanella L, Raffaele M, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;3484107. https://​doi.​org/​10.​1155/​2018/​3484107.
53.
go back to reference Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández DI, Rodríguez E, Morán L, Hernández-Cosido L, Torres JL, Seoane LM, , Cubero FJ, Marcos M, Sabio G. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 2019; 216(5): 1108–1119.PubMedPubMedCentral Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández DI, Rodríguez E, Morán L, Hernández-Cosido L, Torres JL, Seoane LM, , Cubero FJ, Marcos M, Sabio G. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 2019; 216(5): 1108–1119.PubMedPubMedCentral
54.
go back to reference Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and Neointimal formation. J Biol Chem. 2002;277(29):25863–6.PubMed Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and Neointimal formation. J Biol Chem. 2002;277(29):25863–6.PubMed
55.
go back to reference Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected Ob/Ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8.PubMed Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected Ob/Ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8.PubMed
56.
go back to reference Wei G, Yi S, Yong D, Shaozhuang L, Guangyong Z, Sanyuan H. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis. 2018;14(7):960–71.PubMed Wei G, Yi S, Yong D, Shaozhuang L, Guangyong Z, Sanyuan H. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis. 2018;14(7):960–71.PubMed
57.
go back to reference Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(3):700–8. Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(3):700–8.
58.
go back to reference Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50(3):957–69.PubMed Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50(3):957–69.PubMed
59.
go back to reference Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep. 2016;6:34151.PubMedPubMedCentral Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep. 2016;6:34151.PubMedPubMedCentral
60.
go back to reference Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentral Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentral
61.
go back to reference Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.PubMedPubMedCentral Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.PubMedPubMedCentral
62.
go back to reference Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267–75.PubMedPubMedCentral Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267–75.PubMedPubMedCentral
63.
go back to reference Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci. 2018;115(26):E5896–905.PubMedPubMedCentral Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci. 2018;115(26):E5896–905.PubMedPubMedCentral
64.
65.
go back to reference Khan HA, Ahmad MZ, Khan JA, Arshad MI. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Int. 2017;16(3):245–56. Khan HA, Ahmad MZ, Khan JA, Arshad MI. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Int. 2017;16(3):245–56.
66.
go back to reference Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.PubMed Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.PubMed
67.
go back to reference Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.PubMed Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.PubMed
68.
go back to reference Chen J, Montagner A, Tan N, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19(7).pii: E1893. Chen J, Montagner A, Tan N, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19(7).pii: E1893.
69.
go back to reference Yu Z, Guo F, Zhang Z, Luo X, Tian J, Li H. Protective effects of glycyrrhizin on LPS and amoxicillin/potassium Clavulanate-induced liver injury in chicken. Pak Vet J. 2017;37(1):13–8. Yu Z, Guo F, Zhang Z, Luo X, Tian J, Li H. Protective effects of glycyrrhizin on LPS and amoxicillin/potassium Clavulanate-induced liver injury in chicken. Pak Vet J. 2017;37(1):13–8.
70.
go back to reference de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12.PubMed de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12.PubMed
72.
go back to reference Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;95974. Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;95974.
73.
go back to reference Mandrika I, Tilgase A, Petrovska R, Klovins J. Hydroxycarboxylic acid receptor ligands modulate Proinflammatory cytokine expression in human macrophages and adipocytes without affecting adipose differentiation. Biol Pharm Bull. 2018;41(10):1574–80.PubMed Mandrika I, Tilgase A, Petrovska R, Klovins J. Hydroxycarboxylic acid receptor ligands modulate Proinflammatory cytokine expression in human macrophages and adipocytes without affecting adipose differentiation. Biol Pharm Bull. 2018;41(10):1574–80.PubMed
74.
go back to reference Salvadó L, Barroso E, Gómez-Foix AM, Palomer X, Michalik L, Wahli W, et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia. 2014;57(10):2126–35.PubMed Salvadó L, Barroso E, Gómez-Foix AM, Palomer X, Michalik L, Wahli W, et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia. 2014;57(10):2126–35.PubMed
75.
go back to reference Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.PubMed Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.PubMed
76.
go back to reference Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.PubMed Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.PubMed
77.
go back to reference Magadum A, Engel F. PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci. 2018;19(7). pii: E2013.PubMedCentral Magadum A, Engel F. PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci. 2018;19(7). pii: E2013.PubMedCentral
78.
go back to reference Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res. 2018;6970407. Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res. 2018;6970407.
79.
go back to reference Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.PubMedPubMedCentral Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.PubMedPubMedCentral
80.
go back to reference Chen J, Liu H, Zhang X. Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(7):732–7.PubMed Chen J, Liu H, Zhang X. Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(7):732–7.PubMed
81.
go back to reference Kim MJ, Park CH, Kim DH, Park MH, Park KC, Hyun MK, et al. Hepatoprotective effects of MHY3200 on high-fat, diet-induced, non-alcoholic fatty liver disease in rats. Mol Basel Switz. 2018;23(8):2057. Kim MJ, Park CH, Kim DH, Park MH, Park KC, Hyun MK, et al. Hepatoprotective effects of MHY3200 on high-fat, diet-induced, non-alcoholic fatty liver disease in rats. Mol Basel Switz. 2018;23(8):2057.
82.
go back to reference Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High fat diet upregulates fatty acid oxidation and Ketogenesis via intervention of PPAR-γ. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;48(3):1317–31. Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High fat diet upregulates fatty acid oxidation and Ketogenesis via intervention of PPAR-γ. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;48(3):1317–31.
83.
go back to reference Santin JR, Machado ID, Drewes CC, Kupa LD, Soares RM, Cavalcanti DM, et al. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother. 2018;105:947–55.PubMed Santin JR, Machado ID, Drewes CC, Kupa LD, Soares RM, Cavalcanti DM, et al. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother. 2018;105:947–55.PubMed
Metadata
Title
Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease
Authors
Syeda Momna Ishtiaq
Haroon Rashid
Zulfia Hussain
Muhammad Imran Arshad
Junaid Ali Khan
Publication date
01-09-2019
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 3/2019
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09510-2

Other articles of this Issue 3/2019

Reviews in Endocrine and Metabolic Disorders 3/2019 Go to the issue