Skip to main content
Top
Published in: Pituitary 4/2017

Open Access 01-08-2017

Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology

Authors: Filip Garbicz, Dawid Mehlich, Beata Rak, Emir Sajjad, Maria Maksymowicz, Wiktor Paskal, Grzegorz Zieliński, Paweł K. Włodarski

Published in: Pituitary | Issue 4/2017

Login to get access

Abstract

Purpose

MCM7 (minichromosome maintenance complex component 7), a DNA replication licensing factor, is a host gene for the oncogenic miR-106b~25 cluster. It has been recently revealed as a relevant prognostic biomarker in a variety of cancers, including pituitary adenomas. The purpose of this study was to assess whether miR-106b~25 and MCM7 levels correlate with tumor invasiveness in a cohort of ACTH-immunopositive adenomas.

Methods

Tissue samples were obtained intraoperatively from 25 patients with pituitary adenoma. Tumor invasiveness was assessed according to the Knosp grading scale. MCM7, Ki-67 and TP53 levels were assessed by immunohistochemical staining, while the expression of miR-106b-5p, miR-93-5p, miR-93-3p and miR-25-3p were measured using quantitative real-time PCR performed on RNA isolated from FFPE tissues.

Results

We have found a significant increase in MCM7 and Ki-67 labeling indices in invasive ACTHomas. Moreover, MCM7 was ubiquitously overexpressed in Crooke’s cell adenomas. The expression of miR-93-5p was significantly elevated in invasive compared to noninvasive tumors. In addition, all four microRNAs from the miR-106b~25 cluster displayed marked upregulation in Crooke’s cell adenomas. Remarkably, MCM7 and miR-106b-5p both strongly correlated with Knosp grade. A combination of MCM7 LI and miR-106b~25 cluster expression was able to accurately differentiate invasive from noninvasive tumors and had a significant discriminatory ability to predict postoperative tumor recurrence/progression.

Conclusions

miR-106b~25 and its host gene MCM7 are potential novel biomarkers for invasive ACTH-immunopositive pituitary adenomas. Additionally, they are both significantly upregulated in rare Crooke’s cell adenomas and might therefore contribute to their aggressive phenotype.
Literature
2.
3.
go back to reference Nieman LK, Ilias I (2005) Evaluation and treatment of Cushing’s syndrome. Am J Med 118:1340–1346CrossRefPubMed Nieman LK, Ilias I (2005) Evaluation and treatment of Cushing’s syndrome. Am J Med 118:1340–1346CrossRefPubMed
4.
go back to reference Seltzer J, Ashton CE, Scotton TC et al (2015) Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 38:E17CrossRefPubMed Seltzer J, Ashton CE, Scotton TC et al (2015) Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 38:E17CrossRefPubMed
5.
go back to reference Syro LV, Rotondo F, Cusimano MD et al (2015) Current status on histological classification in Cushing’s disease. Pituitary 18:217–224CrossRefPubMed Syro LV, Rotondo F, Cusimano MD et al (2015) Current status on histological classification in Cushing’s disease. Pituitary 18:217–224CrossRefPubMed
6.
go back to reference George DH, Scheithauer BW, Kovacs K et al (2003) Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 27:1330–1336CrossRefPubMed George DH, Scheithauer BW, Kovacs K et al (2003) Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 27:1330–1336CrossRefPubMed
7.
go back to reference Scheithauer BW, Jaap AJ, Horvath E et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723-9-30 Scheithauer BW, Jaap AJ, Horvath E et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723-9-30
8.
go back to reference Gomez-hernandez K, Ezzat S, Asa SL, Mete O (2015) Clinical implications of accurate subtyping of pituitary adenomas: perspectives from the treating physician. Turkish J Pathol 31:4–17 Gomez-hernandez K, Ezzat S, Asa SL, Mete O (2015) Clinical implications of accurate subtyping of pituitary adenomas: perspectives from the treating physician. Turkish J Pathol 31:4–17
9.
go back to reference Cooper O, Ben-Shlomo A, Bonert V et al (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1:80–92CrossRefPubMedPubMedCentral Cooper O, Ben-Shlomo A, Bonert V et al (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1:80–92CrossRefPubMedPubMedCentral
10.
go back to reference Saeger W, Honegger J, Theodoropoulou M et al (2016) Clinical impact of the current WHO classification of pituitary adenomas. Endocr Pathol 27:104–114CrossRefPubMed Saeger W, Honegger J, Theodoropoulou M et al (2016) Clinical impact of the current WHO classification of pituitary adenomas. Endocr Pathol 27:104–114CrossRefPubMed
11.
go back to reference Felix IA, Horvath E, Kovacs K (1981) Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary: a histological, immunocytological, and electron microscopic study of three cases. Acta Neurochir 58:235–243CrossRefPubMed Felix IA, Horvath E, Kovacs K (1981) Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary: a histological, immunocytological, and electron microscopic study of three cases. Acta Neurochir 58:235–243CrossRefPubMed
12.
go back to reference Di Ieva A, Davidson JM, Syro LV et al (2015) Crooke’s cell tumors of the pituitary. Neurosurgery 76:616–622CrossRefPubMed Di Ieva A, Davidson JM, Syro LV et al (2015) Crooke’s cell tumors of the pituitary. Neurosurgery 76:616–622CrossRefPubMed
13.
go back to reference Rotondo F, Cusimano M, Scheithauer BW et al (2012) Atypical, invasive, recurring Crooke cell adenoma of the pituitary. Hormones 11:94–100PubMed Rotondo F, Cusimano M, Scheithauer BW et al (2012) Atypical, invasive, recurring Crooke cell adenoma of the pituitary. Hormones 11:94–100PubMed
14.
go back to reference Raverot G, Jouanneau E, Trouillas J (2014) Management of endocrine disease: clinicopathological classification and molecular markers of pituitary tumours for personalized therapeutic strategies. Eur J Endocrinol 170:R121–R132CrossRefPubMed Raverot G, Jouanneau E, Trouillas J (2014) Management of endocrine disease: clinicopathological classification and molecular markers of pituitary tumours for personalized therapeutic strategies. Eur J Endocrinol 170:R121–R132CrossRefPubMed
15.
go back to reference Lloyd RV, Kovacs K, Young WF Jr, Farrell WE, Asa SL (2004) Pituitary tumours. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) World Health Organization classification of tumours: tumours of endocrine organs IARC Press, Lyon Lloyd RV, Kovacs K, Young WF Jr, Farrell WE, Asa SL (2004) Pituitary tumours. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) World Health Organization classification of tumours: tumours of endocrine organs IARC Press, Lyon
16.
go back to reference Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22:443–453CrossRefPubMed Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22:443–453CrossRefPubMed
17.
go back to reference Mete O, Ezzat S, Asa SL (2012) Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 49:R69–R78CrossRefPubMed Mete O, Ezzat S, Asa SL (2012) Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 49:R69–R78CrossRefPubMed
18.
go back to reference Coli A, Asa SL, Fadda G et al (2016) Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur J Endocrinol 174:307–314CrossRefPubMed Coli A, Asa SL, Fadda G et al (2016) Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur J Endocrinol 174:307–314CrossRefPubMed
19.
20.
go back to reference Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMed Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMed
22.
go back to reference Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286CrossRefPubMed Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286CrossRefPubMed
23.
go back to reference Li Y, Tan W, Neo TWL et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100:1234–1242CrossRefPubMed Li Y, Tan W, Neo TWL et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100:1234–1242CrossRefPubMed
24.
go back to reference Kan T, Sato F, Ito T et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136:1689–1700CrossRefPubMedPubMedCentral Kan T, Sato F, Ito T et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136:1689–1700CrossRefPubMedPubMedCentral
25.
go back to reference Wang H, Liu J, Zong Y et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174CrossRefPubMed Wang H, Liu J, Zong Y et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174CrossRefPubMed
26.
go back to reference Poliseno L, Salmena L, Riccardi L, et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29CrossRefPubMedPubMedCentral Poliseno L, Salmena L, Riccardi L, et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29CrossRefPubMedPubMedCentral
27.
go back to reference Khuu C, Utheim TP, Sehic A (2016) The three paralogous MicroRNA clusters in development and disease, miR-17-92, miR-106a-363, and miR-106b-25. Scientifica 2016:e1379643CrossRef Khuu C, Utheim TP, Sehic A (2016) The three paralogous MicroRNA clusters in development and disease, miR-17-92, miR-106a-363, and miR-106b-25. Scientifica 2016:e1379643CrossRef
28.
go back to reference Di Leva A, Rotondo F, Syro LV et al (2014) Aggressive pituitary adenomas diagnosis and emerging treatments. Nat Rev Endocrinol 10:423–435CrossRef Di Leva A, Rotondo F, Syro LV et al (2014) Aggressive pituitary adenomas diagnosis and emerging treatments. Nat Rev Endocrinol 10:423–435CrossRef
29.
go back to reference Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610-617-618 Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610-617-618
30.
go back to reference Righi A, Morandi L, Leonard E et al (2013) Galectin-3 expression in pituitary adenomas as a marker of aggressive behavior. Hum Pathol 44:2400–2409CrossRefPubMed Righi A, Morandi L, Leonard E et al (2013) Galectin-3 expression in pituitary adenomas as a marker of aggressive behavior. Hum Pathol 44:2400–2409CrossRefPubMed
32.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408CrossRefPubMed
33.
go back to reference Jiang X, Zhang X, (2013) The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab 28:245–254CrossRef Jiang X, Zhang X, (2013) The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab 28:245–254CrossRef
34.
go back to reference Gentilin E, Uberti E degli, Zatelli MC (2016) MicroRNAs in the pituitary. Best Pract Res Clin Endocrinol Metab 30:629–639CrossRefPubMed Gentilin E, Uberti E degli, Zatelli MC (2016) MicroRNAs in the pituitary. Best Pract Res Clin Endocrinol Metab 30:629–639CrossRefPubMed
36.
go back to reference Bottoni A, Piccin D, Tagliati F et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285CrossRefPubMed Bottoni A, Piccin D, Tagliati F et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285CrossRefPubMed
37.
go back to reference Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377CrossRefPubMed Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377CrossRefPubMed
38.
go back to reference Stilling G, Sun Z, Zhang S et al (2010) MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38:67–75CrossRefPubMed Stilling G, Sun Z, Zhang S et al (2010) MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38:67–75CrossRefPubMed
39.
go back to reference Amaral FC, Torres N, Saggioro F et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323CrossRefPubMed Amaral FC, Torres N, Saggioro F et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323CrossRefPubMed
40.
go back to reference Gentilin E, Tagliati F, Filieri C et al (2013) miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 154:1690–1700CrossRefPubMedPubMedCentral Gentilin E, Tagliati F, Filieri C et al (2013) miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 154:1690–1700CrossRefPubMedPubMedCentral
41.
go back to reference Qian Z R, Asa SL, Siom H, et al (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441CrossRefPubMed Qian Z R, Asa SL, Siom H, et al (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441CrossRefPubMed
42.
go back to reference Zhou K, Zhang T, Fan Y, et al (2016) MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol 37:13469–13477CrossRefPubMed Zhou K, Zhang T, Fan Y, et al (2016) MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol 37:13469–13477CrossRefPubMed
43.
go back to reference Wei Z, Zhou C, Liu M et al (2015) MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 18:710–721CrossRefPubMed Wei Z, Zhou C, Liu M et al (2015) MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 18:710–721CrossRefPubMed
44.
go back to reference Liao C, Chen W, Fan X et al (2013) MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol Res 21:129–136CrossRefPubMed Liao C, Chen W, Fan X et al (2013) MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol Res 21:129–136CrossRefPubMed
45.
go back to reference Shi X, Tao B, He H et al (2012) MicroRNAs-based network: a novel therapeutic agent in pituitary adenoma. Med Hypotheses 78:380–384CrossRefPubMed Shi X, Tao B, He H et al (2012) MicroRNAs-based network: a novel therapeutic agent in pituitary adenoma. Med Hypotheses 78:380–384CrossRefPubMed
46.
go back to reference Chen C-H, Xiao W-W, Jiang X-B et al (2013) A novel marine drug, SZ-685C, induces apoptosis of MMQ pituitary tumor cells by downregulating miR-200c. Curr Med Chem 20:2145–2154CrossRefPubMed Chen C-H, Xiao W-W, Jiang X-B et al (2013) A novel marine drug, SZ-685C, induces apoptosis of MMQ pituitary tumor cells by downregulating miR-200c. Curr Med Chem 20:2145–2154CrossRefPubMed
47.
go back to reference Palumbo T, Faucz FR, Azevedo M et al (2013) Functional screen analysis reveals miR-26b miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32(13):1651–1659CrossRefPubMed Palumbo T, Faucz FR, Azevedo M et al (2013) Functional screen analysis reveals miR-26b miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32(13):1651–1659CrossRefPubMed
48.
go back to reference Musat M, Korbonits M, Kola B et al (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433CrossRefPubMed Musat M, Korbonits M, Kola B et al (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433CrossRefPubMed
49.
go back to reference Monsalves E, Juraschka K, Tateno T et al (2014) The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 21:R331–R344CrossRefPubMed Monsalves E, Juraschka K, Tateno T et al (2014) The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 21:R331–R344CrossRefPubMed
50.
go back to reference Butz H, Likó I, Czirják S et al (2011) MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124CrossRefPubMed Butz H, Likó I, Czirják S et al (2011) MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124CrossRefPubMed
51.
go back to reference Smith AL, Iwanaga R, Drasin DJ et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31:5162–5171CrossRefPubMedPubMedCentral Smith AL, Iwanaga R, Drasin DJ et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31:5162–5171CrossRefPubMedPubMedCentral
52.
go back to reference Shang X, Li G, Liu H et al (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA Biomarker, is involved in hepatocellular carcinoma development. Medicine 95:e3811CrossRefPubMedPubMedCentral Shang X, Li G, Liu H et al (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA Biomarker, is involved in hepatocellular carcinoma development. Medicine 95:e3811CrossRefPubMedPubMedCentral
53.
go back to reference Li G, Qiu Y, Su Z et al (2013) Genome-wide analyses of radioresistance-associated mirna expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS One 8:e84486CrossRefPubMedPubMedCentral Li G, Qiu Y, Su Z et al (2013) Genome-wide analyses of radioresistance-associated mirna expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS One 8:e84486CrossRefPubMedPubMedCentral
54.
go back to reference Wang Y, Lippman SM, Minna JD et al (2012) Pathway-based serum microRNA profiling and late-stage nonsmall cell lung cancer survival. In: Proceedings of the 103rd annual meeting of the American Association for Cancer Research, vol 72. AACR, Chicago, IL. Philadelphia Wang Y, Lippman SM, Minna JD et al (2012) Pathway-based serum microRNA profiling and late-stage nonsmall cell lung cancer survival. In: Proceedings of the 103rd annual meeting of the American Association for Cancer Research, vol 72. AACR, Chicago, IL. Philadelphia
55.
go back to reference Wang Y, Gu J, Roth JA et al (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809CrossRefPubMedPubMedCentral Wang Y, Gu J, Roth JA et al (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809CrossRefPubMedPubMedCentral
57.
go back to reference Juríková M, Danihel Ľ, Polák Š, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118:544–552CrossRefPubMed Juríková M, Danihel Ľ, Polák Š, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118:544–552CrossRefPubMed
58.
go back to reference Ren B, Yu G, Tseng GC et al (2006) MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 25:1090–1098CrossRefPubMed Ren B, Yu G, Tseng GC et al (2006) MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 25:1090–1098CrossRefPubMed
59.
go back to reference Tamilzhalagan S, Rathinam D, Ganesan K (2017) Amplified 7q21-22 gene MCM7 and its intronic miR-25 suppress COL1A2 associated genes to sustain intestinal gastric cancer features. Mol Carcinog. doi:10.1002/mc.22614 Tamilzhalagan S, Rathinam D, Ganesan K (2017) Amplified 7q21-22 gene MCM7 and its intronic miR-25 suppress COL1A2 associated genes to sustain intestinal gastric cancer features. Mol Carcinog. doi:10.​1002/​mc.​22614
60.
go back to reference Toyokawa G, Masuda K, Daigo Y et al (2011) Minichromosome maintenance protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 10:65CrossRefPubMedPubMedCentral Toyokawa G, Masuda K, Daigo Y et al (2011) Minichromosome maintenance protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 10:65CrossRefPubMedPubMedCentral
61.
go back to reference Ishibashi Y, Kinugasa T, Akagi Y et al (2014) Minichromosome maintenance protein 7 is a risk factor for recurrence in patients with Dukes C colorectal cancer. Anticancer Res 34:4569–4575PubMed Ishibashi Y, Kinugasa T, Akagi Y et al (2014) Minichromosome maintenance protein 7 is a risk factor for recurrence in patients with Dukes C colorectal cancer. Anticancer Res 34:4569–4575PubMed
62.
go back to reference Hamamoto Y, Shomori K, Nosaka K et al (2010) Prognostic significance of Minichromosome maintenance protein 7 and Geminin expression in patients with 109 soft tissue sarcomas. Oncol Lett 1:703–709PubMedPubMedCentral Hamamoto Y, Shomori K, Nosaka K et al (2010) Prognostic significance of Minichromosome maintenance protein 7 and Geminin expression in patients with 109 soft tissue sarcomas. Oncol Lett 1:703–709PubMedPubMedCentral
63.
go back to reference Haldar S, Roy A, Banerjee S (2014) Differential regulation of MCM7 and its intronic miRNA cluster miR-106b-25 during megakaryopoiesis induced polyploidy. RNA Biol 11:1137–1147CrossRefPubMedPubMedCentral Haldar S, Roy A, Banerjee S (2014) Differential regulation of MCM7 and its intronic miRNA cluster miR-106b-25 during megakaryopoiesis induced polyploidy. RNA Biol 11:1137–1147CrossRefPubMedPubMedCentral
64.
go back to reference Zhao Z-N, Bai J-X, Zhou Q et al (2012) TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC. PLoS One 7:e45133CrossRefPubMedPubMedCentral Zhao Z-N, Bai J-X, Zhou Q et al (2012) TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC. PLoS One 7:e45133CrossRefPubMedPubMedCentral
65.
go back to reference Suzuki S, Adachi A, Hiraiwa A et al (1998) Cloning and characterization of human MCM7 promoter. Gene 216:85–91CrossRefPubMed Suzuki S, Adachi A, Hiraiwa A et al (1998) Cloning and characterization of human MCM7 promoter. Gene 216:85–91CrossRefPubMed
66.
go back to reference Fedele M, Pierantoni GM, Visone R, Fusco A (2006) E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Div 1:17CrossRefPubMedPubMedCentral Fedele M, Pierantoni GM, Visone R, Fusco A (2006) E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Div 1:17CrossRefPubMedPubMedCentral
67.
go back to reference Pei L (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491CrossRefPubMed Pei L (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491CrossRefPubMed
68.
69.
go back to reference Ramalingam P, Palanichamy JK, Singh A et al (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20:76–87CrossRefPubMedPubMedCentral Ramalingam P, Palanichamy JK, Singh A et al (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20:76–87CrossRefPubMedPubMedCentral
70.
71.
go back to reference Takeshita A, Inoshita N, Taguchi M et al (2009) High incidence of low O6-methylguanine DNA methyltransferase expression in invasive macroadenomas of Cushing’s disease. Eur J Endocrinol 161:553–559CrossRefPubMed Takeshita A, Inoshita N, Taguchi M et al (2009) High incidence of low O6-methylguanine DNA methyltransferase expression in invasive macroadenomas of Cushing’s disease. Eur J Endocrinol 161:553–559CrossRefPubMed
72.
go back to reference J. Krützfeldt (2016) Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab, 30:551–561CrossRefPubMed J. Krützfeldt (2016) Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab, 30:551–561CrossRefPubMed
Metadata
Title
Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology
Authors
Filip Garbicz
Dawid Mehlich
Beata Rak
Emir Sajjad
Maria Maksymowicz
Wiktor Paskal
Grzegorz Zieliński
Paweł K. Włodarski
Publication date
01-08-2017
Publisher
Springer US
Published in
Pituitary / Issue 4/2017
Print ISSN: 1386-341X
Electronic ISSN: 1573-7403
DOI
https://doi.org/10.1007/s11102-017-0805-y

Other articles of this Issue 4/2017

Pituitary 4/2017 Go to the issue