Skip to main content
Top
Published in: Pituitary 3/2012

Open Access 01-09-2012

Medical management of Cushing’s disease: what is the future?

Authors: Maria Fleseriu, Stephan Petersenn

Published in: Pituitary | Issue 3/2012

Login to get access

Abstract

Cushing’s disease (CD) is caused by a corticotroph, adrenocorticotropic-hormone (ACTH)—secreting pituitary adenoma resulting in significant morbidity and mortality. Transsphenoidal surgery is the initial treatment of choice in almost all cases. Remission rates for microadenomas are good at 65–90 % (with an experienced neurosurgeon) but remission rates are much lower for macroadenomas. However, even after postoperative remission, recurrence rates are high and can be seen up to decades after an initial diagnosis. Repeat surgery or radiation can be useful in these cases, although both have clear limitations with respect to efficacy and/or side effects. Hence, there is a clear unmet need for an effective medical treatment. Currently, most drugs act by inhibiting steroidogenesis in the adrenal glands. Most is known about the effects of ketoconazole and metyrapone. While effective, access to ketoconazole and metyrapone is limited in many countries, experience with long-term use is limited, and side effects can be significant. Recent studies have suggested a role for a pituitary-directed therapy with new multireceptor ligand somatostatin analogs (e.g., pasireotide, recently approved in Europe for treatment of CD), second-generation dopamine agonists, or a combination of both. Mifepristone (a glucocorticoid receptor antagonist) is another promising drug, recently approved by the FDA for treatment of hyperglycemia associated with Cushing’s syndrome. We review available medical treatments for CD with a focus on the two most recent compounds referenced above. Our aim is to expand awareness of current research, and the possibilities afforded by available medical treatments for this mesmerizing, but often frightful disease.
Literature
1.
go back to reference Biller BMK et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93(7):2454–2462PubMedCrossRef Biller BMK et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93(7):2454–2462PubMedCrossRef
2.
go back to reference Tritos NA, Biller BMK, Swearingen B (2011) Management of Cushing disease. Nature Rev Endocrinol 7(5):279–289CrossRef Tritos NA, Biller BMK, Swearingen B (2011) Management of Cushing disease. Nature Rev Endocrinol 7(5):279–289CrossRef
3.
go back to reference Patil CG et al (2008) Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 93(2):358–362PubMedCrossRef Patil CG et al (2008) Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 93(2):358–362PubMedCrossRef
4.
go back to reference Clayton RN et al (2011) Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 96(3):632–642PubMedCrossRef Clayton RN et al (2011) Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 96(3):632–642PubMedCrossRef
5.
go back to reference Fleseriu M, Loriaux DL, Ludlam WH (2007) Second-line treatment for Cushing’s disease when initial pituitary surgery is unsuccessful. Curr Opin Endocrinol Diabetes Obes 14(4):323–328PubMedCrossRef Fleseriu M, Loriaux DL, Ludlam WH (2007) Second-line treatment for Cushing’s disease when initial pituitary surgery is unsuccessful. Curr Opin Endocrinol Diabetes Obes 14(4):323–328PubMedCrossRef
6.
go back to reference Friedman RB et al (1989) Repeat transsphenoidal surgery for Cushing’s disease. J Neurosurgery 71(4):520–527CrossRef Friedman RB et al (1989) Repeat transsphenoidal surgery for Cushing’s disease. J Neurosurgery 71(4):520–527CrossRef
7.
go back to reference Nieman LK (2007) Medical therapy of Cushing’s disease. Pituitary 5(2):77–82CrossRef Nieman LK (2007) Medical therapy of Cushing’s disease. Pituitary 5(2):77–82CrossRef
8.
go back to reference Hawn MT et al (2002) Quality of life after laparoscopic bilateral adrenalectomy for Cushing’s disease. Surgery 132(6):1064–1069PubMedCrossRef Hawn MT et al (2002) Quality of life after laparoscopic bilateral adrenalectomy for Cushing’s disease. Surgery 132(6):1064–1069PubMedCrossRef
9.
go back to reference Assie G et al (2007) Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s Syndrome. J Clin Endocrinol Metab 92(1):172–179PubMedCrossRef Assie G et al (2007) Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s Syndrome. J Clin Endocrinol Metab 92(1):172–179PubMedCrossRef
10.
go back to reference Petersenn S (2011) Medical management of Cushing’s disease. In: Swearingen B, Biller BMK (eds) Endocrine updates vol. 31: Cushing’s disease. Springer, New York, pp 167–182 Petersenn S (2011) Medical management of Cushing’s disease. In: Swearingen B, Biller BMK (eds) Endocrine updates vol. 31: Cushing’s disease. Springer, New York, pp 167–182
11.
go back to reference Feelders RA et al (2010) Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 362(19):1846–1848PubMedCrossRef Feelders RA et al (2010) Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 362(19):1846–1848PubMedCrossRef
12.
go back to reference Kamenicky P et al (2011) Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 96(9):2796–2804PubMedCrossRef Kamenicky P et al (2011) Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab 96(9):2796–2804PubMedCrossRef
13.
go back to reference Deutschbein T et al (2011) Measurement of urinary free cortisol by current immunoassays: need for sex-dependent reference ranges to define hypercortisolism. Horm Metab Res 43(10):714–719PubMedCrossRef Deutschbein T et al (2011) Measurement of urinary free cortisol by current immunoassays: need for sex-dependent reference ranges to define hypercortisolism. Horm Metab Res 43(10):714–719PubMedCrossRef
14.
go back to reference Deutschbein T et al (2012) Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur J Endocrinol 166(4):613–618PubMedCrossRef Deutschbein T et al (2012) Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur J Endocrinol 166(4):613–618PubMedCrossRef
15.
go back to reference Batista DL et al (2006) The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 91(11):4482–4488PubMedCrossRef Batista DL et al (2006) The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 91(11):4482–4488PubMedCrossRef
16.
go back to reference Greenman Y, Melmed S (1994) Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 79(3):724–729PubMedCrossRef Greenman Y, Melmed S (1994) Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 79(3):724–729PubMedCrossRef
17.
go back to reference Greenman Y, Melmed S (1994) Heterogeneous expression of two somatostatin receptor subtypes in pituitary tumors. J Clin Endocrinol Metab 178(2):398–403CrossRef Greenman Y, Melmed S (1994) Heterogeneous expression of two somatostatin receptor subtypes in pituitary tumors. J Clin Endocrinol Metab 178(2):398–403CrossRef
18.
go back to reference Hofland LJ et al (2005) The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 152(4):645–654PubMedCrossRef Hofland LJ et al (2005) The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 152(4):645–654PubMedCrossRef
19.
go back to reference Miller GM et al (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab 80(4):1386–1392PubMedCrossRef Miller GM et al (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab 80(4):1386–1392PubMedCrossRef
20.
go back to reference Nielsen S et al (1998) Gene transcription of receptors for growth hormone-releasing peptide and somatostatin in human pituitary adenomas. J Clin Endocrinol Metab 83(8):2997–3000PubMedCrossRef Nielsen S et al (1998) Gene transcription of receptors for growth hormone-releasing peptide and somatostatin in human pituitary adenomas. J Clin Endocrinol Metab 83(8):2997–3000PubMedCrossRef
21.
go back to reference Panetta R, Patel YC (1995) Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci 56(5):333–342PubMedCrossRef Panetta R, Patel YC (1995) Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci 56(5):333–342PubMedCrossRef
22.
go back to reference Strowski MZ et al (2002) Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinol 75(6):339–346CrossRef Strowski MZ et al (2002) Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinol 75(6):339–346CrossRef
23.
go back to reference Stalla GK et al (1994) Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J Endocrinol 130(2):125–131PubMedCrossRef Stalla GK et al (1994) Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J Endocrinol 130(2):125–131PubMedCrossRef
24.
go back to reference Petersenn S et al (1999) Genomic structure and transcriptional regulation of the human somatostatin receptor type 2. Mol Cell Endocrinol 157(1–2):75–85PubMedCrossRef Petersenn S et al (1999) Genomic structure and transcriptional regulation of the human somatostatin receptor type 2. Mol Cell Endocrinol 157(1–2):75–85PubMedCrossRef
25.
go back to reference Ambrosi B et al (1990) Failure of somatostatin and octreotide to acutely affect the hypothalamic-pituitary-adrenal function in patients with corticotropin hypersecretion. J Endocrinol Invest 13(3):257–261PubMed Ambrosi B et al (1990) Failure of somatostatin and octreotide to acutely affect the hypothalamic-pituitary-adrenal function in patients with corticotropin hypersecretion. J Endocrinol Invest 13(3):257–261PubMed
26.
go back to reference Lamberts SW et al (1989) Studies on the conditions determining the inhibitory effect of somatostatin on adrenocorticotropin, prolactin and thyrotropin release by cultured rat pituitary cells. Neuroendocrinol 50(1):44–50CrossRef Lamberts SW et al (1989) Studies on the conditions determining the inhibitory effect of somatostatin on adrenocorticotropin, prolactin and thyrotropin release by cultured rat pituitary cells. Neuroendocrinol 50(1):44–50CrossRef
27.
go back to reference Invitti C et al (1990) Treatment of Cushing’s syndrome with the long-acting somatostatin analogue SMS 201–995 (sandostatin). Clin Endocrinol (Oxf) 32(3):275–281CrossRef Invitti C et al (1990) Treatment of Cushing’s syndrome with the long-acting somatostatin analogue SMS 201–995 (sandostatin). Clin Endocrinol (Oxf) 32(3):275–281CrossRef
28.
go back to reference Woodhouse NJ et al (1993) Acute and long-term effects of octreotide in patients with ACTH-dependent Cushing’s syndrome. Am J Med 95(3):305–308PubMedCrossRef Woodhouse NJ et al (1993) Acute and long-term effects of octreotide in patients with ACTH-dependent Cushing’s syndrome. Am J Med 95(3):305–308PubMedCrossRef
29.
go back to reference Bruns C et al (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146(5):707–716PubMedCrossRef Bruns C et al (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146(5):707–716PubMedCrossRef
30.
go back to reference Schmid HA, Schoeffter P (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinol 80(Suppl 1):47–50CrossRef Schmid HA, Schoeffter P (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinol 80(Suppl 1):47–50CrossRef
31.
go back to reference van der Hoek J et al (2005) Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 289(2):E278–E287PubMedCrossRef van der Hoek J et al (2005) Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 289(2):E278–E287PubMedCrossRef
32.
go back to reference Silva AP et al (2005) Regulation of ghrelin secretion by somatostatin analogs in rats. Eur J Endocrinol 152(6):887–894PubMedCrossRef Silva AP et al (2005) Regulation of ghrelin secretion by somatostatin analogs in rats. Eur J Endocrinol 152(6):887–894PubMedCrossRef
33.
go back to reference Ben-Shlomo A et al (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94(11):4342–4350PubMedCrossRef Ben-Shlomo A et al (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94(11):4342–4350PubMedCrossRef
34.
go back to reference Boscaro M et al (2009) Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab 94(1):115–122PubMedCrossRef Boscaro M et al (2009) Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab 94(1):115–122PubMedCrossRef
35.
go back to reference Colao A et al (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924PubMedCrossRef Colao A et al (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924PubMedCrossRef
36.
go back to reference Signifor® (2012) Summary of product characteristics. Novartis, Basel Signifor® (2012) Summary of product characteristics. Novartis, Basel
37.
go back to reference Cukier K et al (2009) Significant response to pasireotide (SOM230) in the treatment of a patient with persistent, refractory Cushing’s disease. Clin Endocrinol (Oxf) 71(2):305–307CrossRef Cukier K et al (2009) Significant response to pasireotide (SOM230) in the treatment of a patient with persistent, refractory Cushing’s disease. Clin Endocrinol (Oxf) 71(2):305–307CrossRef
38.
go back to reference Bode H et al (2010) SOM230 (pasireotide) and temozolomide achieve sustained control of tumour progression and ACTH secretion in pituitary carcinoma with widespread metastases. Exp Clin Endocrinol Diabetes 118(10):760–763PubMedCrossRef Bode H et al (2010) SOM230 (pasireotide) and temozolomide achieve sustained control of tumour progression and ACTH secretion in pituitary carcinoma with widespread metastases. Exp Clin Endocrinol Diabetes 118(10):760–763PubMedCrossRef
39.
go back to reference Stefaneanu L et al (2001) Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine 14(3):329–336PubMedCrossRef Stefaneanu L et al (2001) Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine 14(3):329–336PubMedCrossRef
40.
go back to reference Adams EF et al (1981) Bromocriptine suppresses ACTH secretion from human pituitary tumour cells in culture by a dopaminergic mechanism. Clin Endocrinol (Oxf) 15(5):479–484CrossRef Adams EF et al (1981) Bromocriptine suppresses ACTH secretion from human pituitary tumour cells in culture by a dopaminergic mechanism. Clin Endocrinol (Oxf) 15(5):479–484CrossRef
41.
go back to reference Yin D et al (1994) Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 339(1–2):73–75PubMedCrossRef Yin D et al (1994) Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 339(1–2):73–75PubMedCrossRef
42.
go back to reference Miller JW, Crapo L (1993) The medical treatment of Cushing’s syndrome. Endocr Rev 14(4):443–458PubMed Miller JW, Crapo L (1993) The medical treatment of Cushing’s syndrome. Endocr Rev 14(4):443–458PubMed
43.
go back to reference Hale AC et al (1988) A bromocriptine-responsive corticotroph adenoma secreting alpha-MSH in a patient with Cushing’s disease. Clin Endocrinol (Oxf) 28(2):215–223CrossRef Hale AC et al (1988) A bromocriptine-responsive corticotroph adenoma secreting alpha-MSH in a patient with Cushing’s disease. Clin Endocrinol (Oxf) 28(2):215–223CrossRef
44.
go back to reference Koppeschaar HP et al (1986) Response to neurotransmitter modulating drugs in patients with Cushing’s disease. Clin Endocrinol (Oxf) 25(6):661–667CrossRef Koppeschaar HP et al (1986) Response to neurotransmitter modulating drugs in patients with Cushing’s disease. Clin Endocrinol (Oxf) 25(6):661–667CrossRef
45.
go back to reference Pivonello R et al (2004) Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab 89(5):2452–2462PubMedCrossRef Pivonello R et al (2004) Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab 89(5):2452–2462PubMedCrossRef
46.
go back to reference Pivonello R et al (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94(1):223–230PubMedCrossRef Pivonello R et al (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94(1):223–230PubMedCrossRef
47.
go back to reference Godbout A et al (2010) Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 163(5):709–716PubMedCrossRef Godbout A et al (2010) Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol 163(5):709–716PubMedCrossRef
48.
go back to reference Schade R et al (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356(1):29–38PubMedCrossRef Schade R et al (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356(1):29–38PubMedCrossRef
49.
go back to reference Zanettini R et al (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 356(1):39–46PubMedCrossRef Zanettini R et al (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 356(1):39–46PubMedCrossRef
50.
go back to reference Mannelli M et al (2010) Role of the PPAR-gamma system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinol 92(Suppl 1):23–27CrossRef Mannelli M et al (2010) Role of the PPAR-gamma system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinol 92(Suppl 1):23–27CrossRef
51.
go back to reference Heaney AP et al (2002) Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med 8(11):1281–1287PubMedCrossRef Heaney AP et al (2002) Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med 8(11):1281–1287PubMedCrossRef
52.
go back to reference Emery MN et al (2006) PPAR-gamma expression in pituitary tumours and the functional activity of the glitazones: evidence that any anti-proliferative effect of the glitazones is independent of the PPAR-gamma receptor. Clin Endocrinol (Oxf) 65(3):389–395CrossRef Emery MN et al (2006) PPAR-gamma expression in pituitary tumours and the functional activity of the glitazones: evidence that any anti-proliferative effect of the glitazones is independent of the PPAR-gamma receptor. Clin Endocrinol (Oxf) 65(3):389–395CrossRef
54.
go back to reference Ambrosi B et al (2004) Effects of chronic administration of PPAR-gamma ligand rosiglitazone in Cushing’s disease. Eur J Endocrinol 151(2):173–178PubMedCrossRef Ambrosi B et al (2004) Effects of chronic administration of PPAR-gamma ligand rosiglitazone in Cushing’s disease. Eur J Endocrinol 151(2):173–178PubMedCrossRef
55.
go back to reference Pecori Giraldi F et al (2006) Effect of protracted treatment with rosiglitazone, a PPARgamma agonist, in patients with Cushing’s disease. Clin Endocrinol (Oxf) 64(2):219–224CrossRef Pecori Giraldi F et al (2006) Effect of protracted treatment with rosiglitazone, a PPARgamma agonist, in patients with Cushing’s disease. Clin Endocrinol (Oxf) 64(2):219–224CrossRef
56.
go back to reference Morcos M et al (2007) Long-term treatment of central Cushing’s syndrome with rosiglitazone. Exp Clin Endocrinol Diabetes 115(5):292–297PubMedCrossRef Morcos M et al (2007) Long-term treatment of central Cushing’s syndrome with rosiglitazone. Exp Clin Endocrinol Diabetes 115(5):292–297PubMedCrossRef
57.
go back to reference Suri D, Weiss RE (2005) Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing’s disease. J Clin Endocrinol Metab 90(3):1340–1346PubMedCrossRef Suri D, Weiss RE (2005) Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing’s disease. J Clin Endocrinol Metab 90(3):1340–1346PubMedCrossRef
58.
go back to reference Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Int Med 170(14):1191–1201CrossRef Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Int Med 170(14):1191–1201CrossRef
59.
go back to reference Schteingart DE (2009) Drugs in the medical treatment of Cushing’s syndrome. Expert Opin Emerg Drugs 14(4):661–671PubMedCrossRef Schteingart DE (2009) Drugs in the medical treatment of Cushing’s syndrome. Expert Opin Emerg Drugs 14(4):661–671PubMedCrossRef
60.
go back to reference Trainer PJ et al (2000) Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 342(16):1171–1177PubMedCrossRef Trainer PJ et al (2000) Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 342(16):1171–1177PubMedCrossRef
61.
go back to reference Gaillard RC et al (1984) RU 486: a steroid with antiglucocorticosteroid activity that only disinhibits the human pituitary-adrenal system at a specific time of day. Proc Natl Acad Sci 81(12):3879–3882PubMedCrossRef Gaillard RC et al (1984) RU 486: a steroid with antiglucocorticosteroid activity that only disinhibits the human pituitary-adrenal system at a specific time of day. Proc Natl Acad Sci 81(12):3879–3882PubMedCrossRef
62.
go back to reference Gaillard RC et al (1985) RU 486 inhibits peripheral effects of glucocorticoids in humans. J Clin Endocrinol Metab 61(6):1009–1011PubMedCrossRef Gaillard RC et al (1985) RU 486 inhibits peripheral effects of glucocorticoids in humans. J Clin Endocrinol Metab 61(6):1009–1011PubMedCrossRef
63.
go back to reference Bertagna X et al (1986) Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing’s syndrome. J Clin Endocrinol Metab 63(3):639–643PubMedCrossRef Bertagna X et al (1986) Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing’s syndrome. J Clin Endocrinol Metab 63(3):639–643PubMedCrossRef
64.
go back to reference Johanssen S, Allolio B (2007) Mifepristone (RU 486) in Cushing’s syndrome. Eur J Endocrinol 157(5):561–569PubMedCrossRef Johanssen S, Allolio B (2007) Mifepristone (RU 486) in Cushing’s syndrome. Eur J Endocrinol 157(5):561–569PubMedCrossRef
65.
go back to reference Castinetti F et al (2009) Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol 160(6):1003–1010PubMedCrossRef Castinetti F et al (2009) Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol 160(6):1003–1010PubMedCrossRef
66.
go back to reference Chu JW et al (2001) Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 86(8):3568–3573PubMedCrossRef Chu JW et al (2001) Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 86(8):3568–3573PubMedCrossRef
67.
go back to reference Fleseriu M et al (2012) Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab [Epub ahead of print] Fleseriu M et al (2012) Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab [Epub ahead of print]
69.
go back to reference Belanoff JK et al (2010) Selective glucocorticoid receptor (type II) antagonist prevents and reverses olanzapine-induced weight gain. Diabetes Obesity Metab 12(6):545–547CrossRef Belanoff JK et al (2010) Selective glucocorticoid receptor (type II) antagonist prevents and reverses olanzapine-induced weight gain. Diabetes Obesity Metab 12(6):545–547CrossRef
70.
go back to reference Thorn GW et al (1956) Inhibition of corticosteroid secretion by amphenone in a patient with adrenocortical carcinoma. N Engl J Med 254(12):547–551PubMedCrossRef Thorn GW et al (1956) Inhibition of corticosteroid secretion by amphenone in a patient with adrenocortical carcinoma. N Engl J Med 254(12):547–551PubMedCrossRef
71.
go back to reference Hertz R, Pittman JA, Graff MM (1956) Amphenone: toxicity and effects on adrenal and thyroid function in man. J Clin Endocrinol Metab 16(6):705–723PubMedCrossRef Hertz R, Pittman JA, Graff MM (1956) Amphenone: toxicity and effects on adrenal and thyroid function in man. J Clin Endocrinol Metab 16(6):705–723PubMedCrossRef
72.
go back to reference Liu JK et al (2007) Treatment options for Cushing disease after unsuccessful transsphenoidal surgery. Neurosurg Focus 23(3):E8PubMedCrossRef Liu JK et al (2007) Treatment options for Cushing disease after unsuccessful transsphenoidal surgery. Neurosurg Focus 23(3):E8PubMedCrossRef
73.
go back to reference Liddle GW et al (1958) Alterations of adrenal steroid patterns in man resulting from treatment with a chemical inhibitor of 11 beta-hydroxylation. J Clin Endocrinol Metab 18(8):906–912PubMedCrossRef Liddle GW et al (1958) Alterations of adrenal steroid patterns in man resulting from treatment with a chemical inhibitor of 11 beta-hydroxylation. J Clin Endocrinol Metab 18(8):906–912PubMedCrossRef
74.
go back to reference Gower DB (1974) Modifiers of steroid-hormone metabolism: a review of their chemistry, biochemistry and clinical applications. J Steroid Biochem 5(5):501–523PubMedCrossRef Gower DB (1974) Modifiers of steroid-hormone metabolism: a review of their chemistry, biochemistry and clinical applications. J Steroid Biochem 5(5):501–523PubMedCrossRef
75.
go back to reference Sonino N, Boscaro M (1999) Medical therapy for Cushing’s disease. Endocrinol Metab Clin North Am 28(1):211–222PubMedCrossRef Sonino N, Boscaro M (1999) Medical therapy for Cushing’s disease. Endocrinol Metab Clin North Am 28(1):211–222PubMedCrossRef
76.
go back to reference Verhelst JA et al (1991) Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 35(2):169–178CrossRef Verhelst JA et al (1991) Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 35(2):169–178CrossRef
77.
go back to reference Jeffcoate WJ et al (1977) Metyrapone in long-term management of Cushing’s disease. Br Med J 2(6081):215–217PubMedCrossRef Jeffcoate WJ et al (1977) Metyrapone in long-term management of Cushing’s disease. Br Med J 2(6081):215–217PubMedCrossRef
78.
go back to reference Pont A et al (1982) Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 97(3):370–372PubMed Pont A et al (1982) Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 97(3):370–372PubMed
79.
go back to reference Pont A et al (1982) Ketoconazole blocks testosterone synthesis. Arch Intern Med 142(12):2137–2140PubMedCrossRef Pont A et al (1982) Ketoconazole blocks testosterone synthesis. Arch Intern Med 142(12):2137–2140PubMedCrossRef
80.
go back to reference Feldman D (1986) Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endocr Rev 7(4):409–420PubMedCrossRef Feldman D (1986) Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endocr Rev 7(4):409–420PubMedCrossRef
81.
go back to reference Sonino N (1987) The use of ketoconazole as an inhibitor of steroid production. N Engl J Med 317(13):812–818PubMedCrossRef Sonino N (1987) The use of ketoconazole as an inhibitor of steroid production. N Engl J Med 317(13):812–818PubMedCrossRef
82.
go back to reference Castinetti F et al (2008) Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol 158(1):91–99PubMedCrossRef Castinetti F et al (2008) Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol 158(1):91–99PubMedCrossRef
83.
go back to reference Sonino N et al (1991) Ketoconazole treatment in Cushing’s syndrome: experience in 34 patients. Clin Endocrinol (Oxf) 35(4):347–352CrossRef Sonino N et al (1991) Ketoconazole treatment in Cushing’s syndrome: experience in 34 patients. Clin Endocrinol (Oxf) 35(4):347–352CrossRef
84.
go back to reference Miettinen TA (1988) Cholesterol metabolism during ketoconazole treatment in man. J Lipid Res 29(1):43–51PubMed Miettinen TA (1988) Cholesterol metabolism during ketoconazole treatment in man. J Lipid Res 29(1):43–51PubMed
85.
go back to reference Glass AR, Eil C (1986) Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 63(3):766–769PubMedCrossRef Glass AR, Eil C (1986) Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 63(3):766–769PubMedCrossRef
86.
go back to reference Lake-Bakaar G, Scheuer PJ, Sherlock S (1987) Hepatic reactions associated with ketoconazole in the United Kingdom. Br Med J (Clin Res Ed) 294(6569):419–422CrossRef Lake-Bakaar G, Scheuer PJ, Sherlock S (1987) Hepatic reactions associated with ketoconazole in the United Kingdom. Br Med J (Clin Res Ed) 294(6569):419–422CrossRef
87.
go back to reference Lewis JH et al (1984) Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 86(3):503–513PubMed Lewis JH et al (1984) Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 86(3):503–513PubMed
88.
go back to reference Riedl M et al (2006) Long term control of hypercortisolism with fluconazole: case report and in vitro studies. Eur J Endocrinol 154(4):519–524PubMedCrossRef Riedl M et al (2006) Long term control of hypercortisolism with fluconazole: case report and in vitro studies. Eur J Endocrinol 154(4):519–524PubMedCrossRef
89.
go back to reference Kaminsky N, Luse S, Hartroft P (1962) Ultrastructure of adrenal cortex of the dog during treatment with DDD. J Natl Cancer Inst 29:127–159PubMed Kaminsky N, Luse S, Hartroft P (1962) Ultrastructure of adrenal cortex of the dog during treatment with DDD. J Natl Cancer Inst 29:127–159PubMed
90.
go back to reference Luton JP et al (1979) Treatment of Cushing’s disease by O,p’DDD. Survey of 62 cases. N Engl J Med 300(9):459–464PubMedCrossRef Luton JP et al (1979) Treatment of Cushing’s disease by O,p’DDD. Survey of 62 cases. N Engl J Med 300(9):459–464PubMedCrossRef
91.
go back to reference Schteingart DE et al (1980) Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann Intern Med 92(5):613–619PubMed Schteingart DE et al (1980) Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann Intern Med 92(5):613–619PubMed
92.
go back to reference Hague RV, May W, Cullen DR (1989) Hepatic microsomal enzyme induction and adrenal crisis due to o,p’DDD therapy for metastatic adrenocortical carcinoma. Clin Endocrinol (Oxf) 31(1):51–57CrossRef Hague RV, May W, Cullen DR (1989) Hepatic microsomal enzyme induction and adrenal crisis due to o,p’DDD therapy for metastatic adrenocortical carcinoma. Clin Endocrinol (Oxf) 31(1):51–57CrossRef
93.
go back to reference Robinson BG et al (1987) The effect of o,p′-DDD on adrenal steroid replacement therapy requirements. Clin Endocrinol (Oxf) 27(4):437–444CrossRef Robinson BG et al (1987) The effect of o,p′-DDD on adrenal steroid replacement therapy requirements. Clin Endocrinol (Oxf) 27(4):437–444CrossRef
94.
go back to reference Schulte HM et al (1990) Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 70(5):1426–1430PubMedCrossRef Schulte HM et al (1990) Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab 70(5):1426–1430PubMedCrossRef
95.
go back to reference Greening JE et al (2005) Efficient short-term control of hypercortisolaemia by low-dose etomidate in severe paediatric Cushing’s disease. Horm Res 64(3):140–143PubMedCrossRef Greening JE et al (2005) Efficient short-term control of hypercortisolaemia by low-dose etomidate in severe paediatric Cushing’s disease. Horm Res 64(3):140–143PubMedCrossRef
96.
go back to reference Heyn J et al (2011) Medical suppression of hypercortisolemia in Cushing’s syndrome with particular consideration of etomidate. Pituitary 15(2):117–125CrossRef Heyn J et al (2011) Medical suppression of hypercortisolemia in Cushing’s syndrome with particular consideration of etomidate. Pituitary 15(2):117–125CrossRef
97.
go back to reference Calhoun DA et al (2011) Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation 124(18):1945–1955PubMedCrossRef Calhoun DA et al (2011) Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation 124(18):1945–1955PubMedCrossRef
98.
go back to reference Amar L et al (2010) Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56:831–838PubMedCrossRef Amar L et al (2010) Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56:831–838PubMedCrossRef
99.
go back to reference Bertagna X et al (2012) Patients with Cushing’s disease achieve normal urinary cortisol with LCI699, a potent 11β-hydroxylase inhibitor: preliminary results from a multicenter, proof-of-concept study. Endocrine Abstracts 29 OC1.2. Presented at ICE/ECE 2012, May 5-9, 2012, Florence, Italy Bertagna X et al (2012) Patients with Cushing’s disease achieve normal urinary cortisol with LCI699, a potent 11β-hydroxylase inhibitor: preliminary results from a multicenter, proof-of-concept study. Endocrine Abstracts 29 OC1.2. Presented at ICE/ECE 2012, May 5-9, 2012, Florence, Italy
100.
go back to reference Vilar L et al (2010) Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 13(2):123–129PubMedCrossRef Vilar L et al (2010) Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 13(2):123–129PubMedCrossRef
Metadata
Title
Medical management of Cushing’s disease: what is the future?
Authors
Maria Fleseriu
Stephan Petersenn
Publication date
01-09-2012
Publisher
Springer US
Published in
Pituitary / Issue 3/2012
Print ISSN: 1386-341X
Electronic ISSN: 1573-7403
DOI
https://doi.org/10.1007/s11102-012-0397-5

Other articles of this Issue 3/2012

Pituitary 3/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.