Skip to main content
Top
Published in: Pituitary 3/2009

01-09-2009

Pituitary gland and β-catenin signaling: from ontogeny to oncogenesis

Authors: Maria Gueorguiev, Ashley B. Grossman

Published in: Pituitary | Issue 3/2009

Login to get access

Abstract

Although pituitary tumors are mostly benign, they share certain molecular events with more malignant neoplasia, although their precise pathogenesis is far from established. The acquisition of new functional characteristics during their evolution suggests a multistep process that leads to tumor transformation. Mutations in classical tumor suppressor genes or oncogenes are infrequently associated with pituitary tumorigenesis. However, alterations in different signaling pathways, especially those involved in pituitary gland development, have emerged as significant features in pituitary adenomas. In particular, changes in inhibitory components of the β-catenin pathway and its relationship to the cadherin family of peptides may well play an important role in tumorigenesis. We review and assess the role of the β-catenin signaling pathway in the pathogenesis of pituitary adenomas.
Literature
3.
go back to reference Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91:4769–4775PubMedCrossRef Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91:4769–4775PubMedCrossRef
4.
go back to reference Nielsen EH, Lindholm J, Laurberg P, Bjerre P, Christiansen JS, Hagen C, Juul S, Jørgensen J, Kruse A, Stochholm K (2007) Nonfunctioning pituitary adenoma: incidence, causes of death and quality of life in relation to pituitary function. Pituitary 10:67–73PubMedCrossRef Nielsen EH, Lindholm J, Laurberg P, Bjerre P, Christiansen JS, Hagen C, Juul S, Jørgensen J, Kruse A, Stochholm K (2007) Nonfunctioning pituitary adenoma: incidence, causes of death and quality of life in relation to pituitary function. Pituitary 10:67–73PubMedCrossRef
6.
go back to reference Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32PubMedCrossRef Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32PubMedCrossRef
7.
go back to reference Vergès B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambe B, Montvernay C, Calender A (2002) Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 87:457–465PubMedCrossRef Vergès B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambe B, Montvernay C, Calender A (2002) Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 87:457–465PubMedCrossRef
8.
go back to reference Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563PubMedCrossRef Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563PubMedCrossRef
9.
go back to reference Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen K, Paschke R, Gimm O, Koch CA, Gündogdu S, Lucassen A, Tischkowitz M, Izatt L, Aylwin S, Bano G, Hodgson S, De Menis E, Launonen V, Vahteristo P, Aaltonen LA (2007) Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 92:3321–3325PubMedCrossRef Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen K, Paschke R, Gimm O, Koch CA, Gündogdu S, Lucassen A, Tischkowitz M, Izatt L, Aylwin S, Bano G, Hodgson S, De Menis E, Launonen V, Vahteristo P, Aaltonen LA (2007) Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 92:3321–3325PubMedCrossRef
10.
11.
go back to reference Bossis I, Voudetakis A, Matyakhina L, Pack S, Abu-Asab M, Bourdeau I, Griffin KJ, Courcoutsakis N, Stergiopoulos S, Batista D, Tsokos M, Stratakis CA (1996) A pleiomorphic GH pituitary adenoma from a Carney complex patient displays universal allelic loss at the protein kinase A regulatory subunit 1A (PRKARIA) locus. J Med Genet 41:596–600CrossRef Bossis I, Voudetakis A, Matyakhina L, Pack S, Abu-Asab M, Bourdeau I, Griffin KJ, Courcoutsakis N, Stergiopoulos S, Batista D, Tsokos M, Stratakis CA (1996) A pleiomorphic GH pituitary adenoma from a Carney complex patient displays universal allelic loss at the protein kinase A regulatory subunit 1A (PRKARIA) locus. J Med Genet 41:596–600CrossRef
12.
go back to reference Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, Pras E, Chrousos GP (1996) Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 97:699–705PubMedCrossRef Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, Pras E, Chrousos GP (1996) Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 97:699–705PubMedCrossRef
13.
go back to reference Horvath A, Stratakis CA (2008) Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune-Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev Endocr Metab Disord 9:1–11PubMedCrossRef Horvath A, Stratakis CA (2008) Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune-Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev Endocr Metab Disord 9:1–11PubMedCrossRef
14.
go back to reference Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, Bonthron DT (2001) Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 107:R31–R36PubMedCrossRef Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, Bonthron DT (2001) Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 107:R31–R36PubMedCrossRef
15.
go back to reference Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gündogdu S, De Menis E, Mäkinen MJ, Launonen V, Karhu A, Aaltonen LA (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230PubMedCrossRef Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gündogdu S, De Menis E, Mäkinen MJ, Launonen V, Karhu A, Aaltonen LA (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230PubMedCrossRef
16.
go back to reference Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, Murat A, Emy P, Gimenez-Roqueplo AP, Tamburrano G, Raverot G, Barlier A, De Herder W, Penfornis A, Ciccarelli E, Estour B, Lecomte P, Gatta B, Chabre O, Sabaté MI, Bertagna X, Garcia Basavilbaso N, Stalldecker G, Colao A, Ferolla P, Wémeau JL, Caron P, Sadoul JL, Oneto A, Archambeaud F, Calender A, Sinilnikova O, Montañana CF, Cavagnini F, Hana V, Solano A, Delettieres D, Luccio-Camelo DC, Basso A, Rohmer V, Brue T, Bours V, Teh BT, Beckers A (2007) Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1891–1896PubMedCrossRef Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, Murat A, Emy P, Gimenez-Roqueplo AP, Tamburrano G, Raverot G, Barlier A, De Herder W, Penfornis A, Ciccarelli E, Estour B, Lecomte P, Gatta B, Chabre O, Sabaté MI, Bertagna X, Garcia Basavilbaso N, Stalldecker G, Colao A, Ferolla P, Wémeau JL, Caron P, Sadoul JL, Oneto A, Archambeaud F, Calender A, Sinilnikova O, Montañana CF, Cavagnini F, Hana V, Solano A, Delettieres D, Luccio-Camelo DC, Basso A, Rohmer V, Brue T, Bours V, Teh BT, Beckers A (2007) Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1891–1896PubMedCrossRef
17.
go back to reference Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S, Chahal HS, Igreja SC, Jordan S, Rowe J, Stolbrink M, Christian HC, Wray J, Bishop-Bailey D, Berney DM, Wass JA, Popovic V, Ribeiro-Oliveira A Jr, Gadelha MR, Monson JP, Akker SA, Davis JR, Clayton RN, Yoshimoto K, Iwata T, Matsuno A, Eguchi K, Musat M, Flanagan D, Peters G, Bolger GB, Chapple JP, Frohman LA, Grossman AB, Korbonits M (2008) The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 93:2390–2401PubMedCrossRef Leontiou CA, Gueorguiev M, van der Spuy J, Quinton R, Lolli F, Hassan S, Chahal HS, Igreja SC, Jordan S, Rowe J, Stolbrink M, Christian HC, Wray J, Bishop-Bailey D, Berney DM, Wass JA, Popovic V, Ribeiro-Oliveira A Jr, Gadelha MR, Monson JP, Akker SA, Davis JR, Clayton RN, Yoshimoto K, Iwata T, Matsuno A, Eguchi K, Musat M, Flanagan D, Peters G, Bolger GB, Chapple JP, Frohman LA, Grossman AB, Korbonits M (2008) The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 93:2390–2401PubMedCrossRef
19.
go back to reference He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677PubMedCrossRef He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677PubMedCrossRef
20.
go back to reference Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943PubMedCrossRef Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943PubMedCrossRef
21.
go back to reference Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850PubMedCrossRef Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850PubMedCrossRef
22.
go back to reference Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433PubMedCrossRef Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433PubMedCrossRef
23.
go back to reference Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 38:1–10PubMed Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 38:1–10PubMed
24.
go back to reference Olson LE, Tollkuhn J, Scafoglio C, Krone A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125:593–605PubMedCrossRef Olson LE, Tollkuhn J, Scafoglio C, Krone A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125:593–605PubMedCrossRef
25.
go back to reference Strutt D (2003) Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 130:4501–4513PubMedCrossRef Strutt D (2003) Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 130:4501–4513PubMedCrossRef
26.
go back to reference Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115PubMedCrossRef Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115PubMedCrossRef
27.
go back to reference Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–671PubMedCrossRef Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–671PubMedCrossRef
28.
go back to reference Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–436PubMedCrossRef Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–436PubMedCrossRef
29.
go back to reference Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144PubMedCrossRef Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144PubMedCrossRef
30.
go back to reference Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRef Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRef
31.
go back to reference Ben Ze’ev A, Geiger B (1998) Differential molecular interactions of β-catenin and plakoglobin in adhesion, signalling and cancer. Curr Opin Cell Biol 10:629–639PubMedCrossRef Ben Ze’ev A, Geiger B (1998) Differential molecular interactions of β-catenin and plakoglobin in adhesion, signalling and cancer. Curr Opin Cell Biol 10:629–639PubMedCrossRef
32.
go back to reference Bierkamp C, Schwarz H, Huber O, Kemler R (1999) Desmosomal localization of β-catenin in the skin of plakoglobin null-mutant mice. Development 126:371–381PubMed Bierkamp C, Schwarz H, Huber O, Kemler R (1999) Desmosomal localization of β-catenin in the skin of plakoglobin null-mutant mice. Development 126:371–381PubMed
33.
go back to reference Kolligs FT, Kolligs B, Hajra M, Hu G, Tani M, Cho KR, Fearon ER (2000) Catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of β-catenin. Genes Dev 14:1319–1331PubMed Kolligs FT, Kolligs B, Hajra M, Hu G, Tani M, Cho KR, Fearon ER (2000) Catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of β-catenin. Genes Dev 14:1319–1331PubMed
35.
go back to reference Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben Ze’ev A (1996) Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 133:199–209PubMedCrossRef Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben Ze’ev A (1996) Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 133:199–209PubMedCrossRef
36.
go back to reference Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C, Heasley LE (2002) Catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21:7497–7506PubMedCrossRef Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C, Heasley LE (2002) Catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21:7497–7506PubMedCrossRef
37.
go back to reference Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5:1059–1064PubMed Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5:1059–1064PubMed
38.
go back to reference Billottet C, Elkhatib N, Thiery JP, Jouanneau J (2004) Targets of fibroblast growth factor 1 (FGF-1) and FGF-2 signaling involved in the invasive and tumorigenic behavior of carcinoma cells. Mol Biol Cell 15:4725–4734PubMedCrossRef Billottet C, Elkhatib N, Thiery JP, Jouanneau J (2004) Targets of fibroblast growth factor 1 (FGF-1) and FGF-2 signaling involved in the invasive and tumorigenic behavior of carcinoma cells. Mol Biol Cell 15:4725–4734PubMedCrossRef
39.
go back to reference Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA (2004) WNT5A signaling affects pituitary gland shape. Mech Dev 121:183–194PubMedCrossRef Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA (2004) WNT5A signaling affects pituitary gland shape. Mech Dev 121:183–194PubMedCrossRef
40.
go back to reference Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12:1691–1704PubMedCrossRef Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12:1691–1704PubMedCrossRef
41.
go back to reference Wang J, Shackleford GM (1996) Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 13:1537–1544PubMed Wang J, Shackleford GM (1996) Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 13:1537–1544PubMed
42.
go back to reference Burrows HL, Douglas KR, Seasholtz AF, Camper SA (1999) Genealogy of the anterior pituitary gland: tracing a family tree. Trends Endocrinol Metab 10:343–352PubMedCrossRef Burrows HL, Douglas KR, Seasholtz AF, Camper SA (1999) Genealogy of the anterior pituitary gland: tracing a family tree. Trends Endocrinol Metab 10:343–352PubMedCrossRef
43.
go back to reference Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651PubMed Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651PubMed
44.
go back to reference Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282PubMedCrossRef Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282PubMedCrossRef
45.
go back to reference Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401:276–278PubMedCrossRef Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401:276–278PubMedCrossRef
46.
go back to reference Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA (1996) Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 122:151–160PubMed Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA (1996) Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 122:151–160PubMed
47.
go back to reference Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG (2002) Identification of a Wnt/Dvl/beta-catenin––Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685PubMedCrossRef Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG (2002) Identification of a Wnt/Dvl/beta-catenin––Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685PubMedCrossRef
48.
go back to reference Baek SH, Kioussi C, Briata P, Wang D, Nguyen HD, Ohgi KA, Glass CK, Wynshaw-Boris A, Rose DW, Rosenfeld MG (2003) Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci USA 100:3245–3250PubMedCrossRef Baek SH, Kioussi C, Briata P, Wang D, Nguyen HD, Ohgi KA, Glass CK, Wynshaw-Boris A, Rose DW, Rosenfeld MG (2003) Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci USA 100:3245–3250PubMedCrossRef
49.
go back to reference Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen CY, Gherzi R (2003) The Wnt/beta-catenin–>Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 12:1201–1211PubMedCrossRef Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen CY, Gherzi R (2003) The Wnt/beta-catenin–>Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 12:1201–1211PubMedCrossRef
50.
go back to reference Douglas KR, Brinkmeier ML, Kennell JA, Eswara P, Harrison TA, Patrianakos AI, Sprecher BS, Potok MA, Lyons RH Jr, MacDougald OA, Camper SA (2001) Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mamm Genome 12:843–851PubMedCrossRef Douglas KR, Brinkmeier ML, Kennell JA, Eswara P, Harrison TA, Patrianakos AI, Sprecher BS, Potok MA, Lyons RH Jr, MacDougald OA, Camper SA (2001) Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mamm Genome 12:843–851PubMedCrossRef
51.
go back to reference Salisbury TB, Binder AK, Nilson JH (2008) Welcoming {beta}-Catenin to the GnRH Transcriptional Network in Gonadotropes. Mol Endocrinol 22:1295–1303PubMedCrossRef Salisbury TB, Binder AK, Nilson JH (2008) Welcoming {beta}-Catenin to the GnRH Transcriptional Network in Gonadotropes. Mol Endocrinol 22:1295–1303PubMedCrossRef
52.
go back to reference Salisbury TB, Binder AK, Grammer JC, Nilson JH (2007) Maximal activity of the luteinizing hormone beta-subunit gene requires beta-catenin. Mol Endocrinol 21:963–971PubMedCrossRef Salisbury TB, Binder AK, Grammer JC, Nilson JH (2007) Maximal activity of the luteinizing hormone beta-subunit gene requires beta-catenin. Mol Endocrinol 21:963–971PubMedCrossRef
53.
go back to reference Gardner S, Maudsley S, Millar RP, Pawson AJ (2007) Nuclear stabilization of (beta)-catenin and inactivation of glycogen synthase kinase-3(beta) by gonadotropin-releasing hormone: targeting Wnt signaling in the pituitary gonadotrope. Mol Endocrinol 21:3028–3038PubMedCrossRef Gardner S, Maudsley S, Millar RP, Pawson AJ (2007) Nuclear stabilization of (beta)-catenin and inactivation of glycogen synthase kinase-3(beta) by gonadotropin-releasing hormone: targeting Wnt signaling in the pituitary gonadotrope. Mol Endocrinol 21:3028–3038PubMedCrossRef
54.
go back to reference Kerr JM, Gordon DF, Woodmansee WW, Sarapura VD, Ridgway EC, Wood WM (2005) Growth arrest of thyrotropic tumors by thyroid hormone is correlated with novel changes in Wnt-10A. Mol Cell Endocrinol 238:57–67PubMedCrossRef Kerr JM, Gordon DF, Woodmansee WW, Sarapura VD, Ridgway EC, Wood WM (2005) Growth arrest of thyrotropic tumors by thyroid hormone is correlated with novel changes in Wnt-10A. Mol Cell Endocrinol 238:57–67PubMedCrossRef
55.
go back to reference Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222PubMedCrossRef Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222PubMedCrossRef
56.
go back to reference Evans CO, Moreno CS, Zhan X, McCabe MT, Vertino PM, Desiderio DM, Oyesiku NM (2008) Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 11:231–245PubMedCrossRef Evans CO, Moreno CS, Zhan X, McCabe MT, Vertino PM, Desiderio DM, Oyesiku NM (2008) Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 11:231–245PubMedCrossRef
57.
go back to reference Ruebel KH, Leontovich AA, Jin L, Stilling GA, Zhang H, Qian X, Nakamura N, Scheithauer BW, Kovacs K, Lloyd RV (2006) Patterns of gene expression in pituitary adenomas and carcinomas analysed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression. Endocr 29:435–444CrossRef Ruebel KH, Leontovich AA, Jin L, Stilling GA, Zhang H, Qian X, Nakamura N, Scheithauer BW, Kovacs K, Lloyd RV (2006) Patterns of gene expression in pituitary adenomas and carcinomas analysed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression. Endocr 29:435–444CrossRef
58.
go back to reference Semba S, Han SY, Ikeda H, Horii A (2001) Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer 91:42–48PubMedCrossRef Semba S, Han SY, Ikeda H, Horii A (2001) Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer 91:42–48PubMedCrossRef
59.
go back to reference Howng SL, Wu CH, Cheng TS, Sy WD, Li PC, Wang C, Hong YR (2002) Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett 183:95–101PubMedCrossRef Howng SL, Wu CH, Cheng TS, Sy WD, Li PC, Wang C, Hong YR (2002) Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett 183:95–101PubMedCrossRef
60.
go back to reference Kremenevskaya N, Khattak MNK, Buchfelder M (2007) Activation of the Wnt 5A, β-catenin, TCF-4, cyclin D1 and E-cadherin in null cell pituitary adenomas. Proceedings of the 89th annual meeting of the endocrine society, P1-284, Abstract Kremenevskaya N, Khattak MNK, Buchfelder M (2007) Activation of the Wnt 5A, β-catenin, TCF-4, cyclin D1 and E-cadherin in null cell pituitary adenomas. Proceedings of the 89th annual meeting of the endocrine society, P1-284, Abstract
61.
go back to reference Kremenevskaya N, Khan-Khattak MN, Schofl C, Buchfelder M (2008) Activation of the Wnt/β-catenin pathway in ACTH-secreting pituitary adenomas and inhibition through SRIH-14 in AtT-20 cells. Proceedings of the 90th annual meeting of the endocrine society, P3-510, Abstract Kremenevskaya N, Khan-Khattak MN, Schofl C, Buchfelder M (2008) Activation of the Wnt/β-catenin pathway in ACTH-secreting pituitary adenomas and inhibition through SRIH-14 in AtT-20 cells. Proceedings of the 90th annual meeting of the endocrine society, P3-510, Abstract
62.
go back to reference Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109:589–597PubMedCrossRef Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109:589–597PubMedCrossRef
63.
go back to reference Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2007) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242PubMedCrossRef Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2007) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242PubMedCrossRef
64.
go back to reference Qian ZR, Li CC, Yamasaki H, Mizusawa N, Yoshimoto K, Yamada S, Tashiro T, Horiguchi H, Wakatsuki S, Hirokawa M, Sano T (2002) Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior. Mod Pathol 15:1357–1365PubMedCrossRef Qian ZR, Li CC, Yamasaki H, Mizusawa N, Yoshimoto K, Yamada S, Tashiro T, Horiguchi H, Wakatsuki S, Hirokawa M, Sano T (2002) Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior. Mod Pathol 15:1357–1365PubMedCrossRef
65.
go back to reference Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW, Lloyd RV (2001) Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol 12:125–136PubMedCrossRef Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW, Lloyd RV (2001) Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol 12:125–136PubMedCrossRef
66.
go back to reference Xu B, Sano T, Yoshimoto K, Yamada S (2002) Downregulation of E-cadherin and its undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocr Pathol 13:341–351PubMedCrossRef Xu B, Sano T, Yoshimoto K, Yamada S (2002) Downregulation of E-cadherin and its undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocr Pathol 13:341–351PubMedCrossRef
67.
go back to reference Sano T, Rong QZ, Kagawa N, Yamada S (2004) Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front Horm Res 32:127–132PubMedCrossRef Sano T, Rong QZ, Kagawa N, Yamada S (2004) Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front Horm Res 32:127–132PubMedCrossRef
68.
go back to reference Sun C, Yamato T, Kondo E, Furukawa T, Ikeda H, Horii A (2005) Infrequent mutation of APC, AXIN1, and GSK3B in human pituitary adenomas with abnormal accumulation of CTNNB1. J Neurooncol 73:131–134PubMedCrossRef Sun C, Yamato T, Kondo E, Furukawa T, Ikeda H, Horii A (2005) Infrequent mutation of APC, AXIN1, and GSK3B in human pituitary adenomas with abnormal accumulation of CTNNB1. J Neurooncol 73:131–134PubMedCrossRef
69.
go back to reference Imai M, Nakamura T, Akiyama T, Horii A (2004) Infrequent somatic mutations of the ICAT gene in various human cancers with frequent 1p-LOH and/or abnormal nuclear accumulation of beta-catenin. Oncol Rep 12:1099–1103PubMed Imai M, Nakamura T, Akiyama T, Horii A (2004) Infrequent somatic mutations of the ICAT gene in various human cancers with frequent 1p-LOH and/or abnormal nuclear accumulation of beta-catenin. Oncol Rep 12:1099–1103PubMed
70.
go back to reference Shi Y, He B, You L, Jablons DM (2007) Roles of secreted frizzled-related proteins in cancer. Acta Pharmacol Sin 28:1499–1504PubMedCrossRef Shi Y, He B, You L, Jablons DM (2007) Roles of secreted frizzled-related proteins in cancer. Acta Pharmacol Sin 28:1499–1504PubMedCrossRef
71.
go back to reference Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19:82–91PubMedCrossRef Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19:82–91PubMedCrossRef
72.
go back to reference Ezzat S, Zheng L, Asa SL (2004) Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 18:2543–2552PubMedCrossRef Ezzat S, Zheng L, Asa SL (2004) Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 18:2543–2552PubMedCrossRef
73.
go back to reference Ezzat S, Zheng L, Winer D, Asa SL (2006) Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 20:2965–2975PubMedCrossRef Ezzat S, Zheng L, Winer D, Asa SL (2006) Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 20:2965–2975PubMedCrossRef
74.
go back to reference Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, Mizusawa N, Kudo E (2007) Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20:1269–1277PubMedCrossRef Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, Mizusawa N, Kudo E (2007) Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20:1269–1277PubMedCrossRef
75.
go back to reference Pan H, Gao F, Papageorgis P, Abdolmaleky HM, Faller DV, Thiagalingam S (2007) Aberrant activation of γ-catenin promotes genomic instability and oncogenic effects during tumor progression. Cancer Biol Ther 6:1638–1643PubMedCrossRef Pan H, Gao F, Papageorgis P, Abdolmaleky HM, Faller DV, Thiagalingam S (2007) Aberrant activation of γ-catenin promotes genomic instability and oncogenic effects during tumor progression. Cancer Biol Ther 6:1638–1643PubMedCrossRef
76.
go back to reference Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89PubMedCrossRef Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89PubMedCrossRef
77.
go back to reference Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedCrossRef
78.
go back to reference Kikuchi A (2000) Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268:243–248PubMedCrossRef Kikuchi A (2000) Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268:243–248PubMedCrossRef
79.
go back to reference Musat M, Korbonits M, Kola B, Borboli N, Hanson MR, Nanzer AM, Grigson J, Jordan S, Morris DG, Gueorguiev M, Coculescu M, Basu S, Grossman AB (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433PubMedCrossRef Musat M, Korbonits M, Kola B, Borboli N, Hanson MR, Nanzer AM, Grigson J, Jordan S, Morris DG, Gueorguiev M, Coculescu M, Basu S, Grossman AB (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433PubMedCrossRef
Metadata
Title
Pituitary gland and β-catenin signaling: from ontogeny to oncogenesis
Authors
Maria Gueorguiev
Ashley B. Grossman
Publication date
01-09-2009
Publisher
Springer US
Published in
Pituitary / Issue 3/2009
Print ISSN: 1386-341X
Electronic ISSN: 1573-7403
DOI
https://doi.org/10.1007/s11102-008-0147-x

Other articles of this Issue 3/2009

Pituitary 3/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.