Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2020

Open Access 01-06-2020 | Glioma | Laboratory Investigation

Polycomb-like 2 regulates PRC2 components to affect proliferation in glioma cells

Authors: Fei Wang, Yongying Gao, Ye Lv, Yanwei Wu, Yongzhen Guo, Fang Du, Shixiong Wang, Jiaxiang Yu, Xiangmei Cao, P. Andy Li

Published in: Journal of Neuro-Oncology | Issue 2/2020

Login to get access

Abstract

Introduction

The Polycomb group (PcG) is an important family of transcriptional regulators that controls growth and tumorigenesis. The PcG mainly consists of two complexes, PRC1 and Polycomb Repressive Complex 2 (PRC2). Polycomb-like 2 (PCL2) is known to interact with the PRC2 protein. The role of PCL2 in the development and progression of glioma is unclear.

Methods

We use The Cancer Genome Atlas (TCGA) database to detect the expression of PCL2 in various tumors. 117 cases of clinical glioma (WHOI–IV) were collected, and PCL2 expression and localization were detected by immunohistochemical staining. Glioma cells U87/U251 were infected with overexpressed and interfered PCL2. CCK8 assay, colony formation assay, EdU method, cell cycle and apoptosis were used to detect cell proliferation and apoptosis. Western blot was used to detect the expression of PRC2-related core proteins. After DZNeP intervention, PRC2 protein expression was again measured to discuss the mechanism of PCL2 action.

Results

TCGA database results and immunohistochemical staining results suggest that PCL2 is highly expressed in gliomas. We found that the PCL2 gene promoted tumor cell proliferation, enhanced the colony formation ability, and increased S phase in the cell cycle. The overexpression of PCL2 upregulated the expression levels of EZH2 and EED (two core members of PRC2), decreased the expression of SUZ12, increased the level of H3K27 trimethylation (H3K27me3), H3K4 dimethylation (H3K4me2), and decreased H3K9 dimethylation (H3K9me2). The result after interfering with PCL2 was the opposite.

Conclusions

As an important accessory protein of PRC2, PCL2 can not only change the expression of PRC2 components, but also affect the expression level of Histone methylation. Therefore, PCL2 may be an important hub for regulating the synergy among PRC2 members. This study revealed PCL2 as a new target for tumor research and open up a new avenue for future research in glioma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6:153–166CrossRef Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6:153–166CrossRef
2.
go back to reference Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745CrossRef Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745CrossRef
3.
go back to reference Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22CrossRef Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22CrossRef
4.
go back to reference Veneti Z, Gkouskou KK, Eliopoulos AG (2017) Polycomb Repressor Complex 2 in genomic instability and cancer. Int J Mol Sci 18:1657CrossRef Veneti Z, Gkouskou KK, Eliopoulos AG (2017) Polycomb Repressor Complex 2 in genomic instability and cancer. Int J Mol Sci 18:1657CrossRef
5.
go back to reference Casanova M, Preissner T, Cerase A, Poot R, Yamada D, Li X, Appanah R, Bezstarosti K, Demmers J, Koseki H, Brockdorff N (2011) Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138:1471–1482CrossRef Casanova M, Preissner T, Cerase A, Poot R, Yamada D, Li X, Appanah R, Bezstarosti K, Demmers J, Koseki H, Brockdorff N (2011) Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138:1471–1482CrossRef
6.
go back to reference Rothberg J, Maganti HB, Jrade H, Porter CJ, Palidwor GA, Cafariello C, Battaion HL, Khan ST, Perkins TJ, Paulson RF, Ito CY, Stanford WL (2018) Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov 4:21CrossRef Rothberg J, Maganti HB, Jrade H, Porter CJ, Palidwor GA, Cafariello C, Battaion HL, Khan ST, Perkins TJ, Paulson RF, Ito CY, Stanford WL (2018) Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov 4:21CrossRef
7.
go back to reference O'Connell S, Wang L, Robert S, Jones CA, Saint R, Jones RS (2001) Polycomblike PHD fingers mediate conserved interaction with enhancer of zeste protein. J Biol Chem 276:43065–43073CrossRef O'Connell S, Wang L, Robert S, Jones CA, Saint R, Jones RS (2001) Polycomblike PHD fingers mediate conserved interaction with enhancer of zeste protein. J Biol Chem 276:43065–43073CrossRef
8.
go back to reference Tie F, Prasad-Sinha J, Birve A, Rasmuson-Lestander A, Harte PJ (2003) A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol Cell Biol 23:3352–3362CrossRef Tie F, Prasad-Sinha J, Birve A, Rasmuson-Lestander A, Harte PJ (2003) A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol Cell Biol 23:3352–3362CrossRef
9.
go back to reference Walker E, Manias JL, Chang WY, Stanford WL (2011) PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 10:45–51CrossRef Walker E, Manias JL, Chang WY, Stanford WL (2011) PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 10:45–51CrossRef
10.
go back to reference Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ, Yockell-Lelièvre J, Battaion HL, Khan ST, Howard JP, Li Y, Grzybowski AT, Sabri E, Ruthenburg AJ, Dilworth FJ, Perkins TJ, Sabloff M, Ito CY, Stanford WL (2018) Targeting the MTF2-MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy. Cancer Discov 8:1376–1389CrossRef Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ, Yockell-Lelièvre J, Battaion HL, Khan ST, Howard JP, Li Y, Grzybowski AT, Sabri E, Ruthenburg AJ, Dilworth FJ, Perkins TJ, Sabloff M, Ito CY, Stanford WL (2018) Targeting the MTF2-MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy. Cancer Discov 8:1376–1389CrossRef
11.
go back to reference Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRef Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253CrossRef
12.
go back to reference Nekrasov M, Klymenko T, Fraterman S, Papp B, Oktaba K, Köcher T, Cohen A, Stunnenberg HG, Wilm M, Müller J (2007) Pcl-PRC2 is needed to generate high levels of H3–K27 trimethylation at Polycomb target genes. EMBO J 26:4078–4088CrossRef Nekrasov M, Klymenko T, Fraterman S, Papp B, Oktaba K, Köcher T, Cohen A, Stunnenberg HG, Wilm M, Müller J (2007) Pcl-PRC2 is needed to generate high levels of H3–K27 trimethylation at Polycomb target genes. EMBO J 26:4078–4088CrossRef
13.
go back to reference Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588CrossRef Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588CrossRef
14.
go back to reference Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078CrossRef Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078CrossRef
15.
go back to reference de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676CrossRef de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676CrossRef
16.
go back to reference Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878CrossRef Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878CrossRef
17.
go back to reference Jones A, Wang H (2010) Polycomb repressive complex 2 in embryonic stem cells: an overview. Protein Cell 1:1056–1062CrossRef Jones A, Wang H (2010) Polycomb repressive complex 2 in embryonic stem cells: an overview. Protein Cell 1:1056–1062CrossRef
18.
go back to reference Li X, Isono K, Yamada D, Endo TA, Endoh M, Shinga J, Mizutani-Koseki Y, Otte AP, Casanova M, Kitamura H, Kamijo T, Sharif J, Ohara O, Toyada T, Bernstein BE, Brockdorff N, Koseki H (2011) Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 31:351–364CrossRef Li X, Isono K, Yamada D, Endo TA, Endoh M, Shinga J, Mizutani-Koseki Y, Otte AP, Casanova M, Kitamura H, Kamijo T, Sharif J, Ohara O, Toyada T, Bernstein BE, Brockdorff N, Koseki H (2011) Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 31:351–364CrossRef
19.
go back to reference Wang S, Robertson GP, Zhu J (2004) A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene 343:69–78CrossRef Wang S, Robertson GP, Zhu J (2004) A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene 343:69–78CrossRef
20.
go back to reference Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24:368–380CrossRef Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24:368–380CrossRef
21.
go back to reference Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 28:2718–2731CrossRef Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 28:2718–2731CrossRef
22.
go back to reference Savla U, Benes J, Zhang J, Jones RS (2008) Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135:813–817CrossRef Savla U, Benes J, Zhang J, Jones RS (2008) Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135:813–817CrossRef
23.
go back to reference Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349CrossRef Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349CrossRef
24.
go back to reference Li H, Liefke R, Jiang J, Kurland JV, Tian W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, Shi Y, Wang Z (2017) Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549:287–291CrossRef Li H, Liefke R, Jiang J, Kurland JV, Tian W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, Shi Y, Wang Z (2017) Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549:287–291CrossRef
25.
go back to reference O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336CrossRef O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336CrossRef
26.
go back to reference Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C, Lowe SW, Vakoc CR (2013) The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9; Nras(G12D) acute myeloid leukemia. Oncogene 32:930–938CrossRef Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C, Lowe SW, Vakoc CR (2013) The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9; Nras(G12D) acute myeloid leukemia. Oncogene 32:930–938CrossRef
27.
go back to reference Ikeda K, Ueda T, Yamasaki N, Nakata Y, Sera Y, Nagamachi A, Miyama T, Kobayashi H, Takubo K, Kanai A, Oda H, Wolff L, Honda Z, Ichinohe T, Matsubara A, Suda T, Inaba T, Honda H (2016) Maintenance of the functional integrity of mouse hematopoiesis by EED and promotion of leukemogenesis by EED haploinsufficiency. Sci Rep 6:29454CrossRef Ikeda K, Ueda T, Yamasaki N, Nakata Y, Sera Y, Nagamachi A, Miyama T, Kobayashi H, Takubo K, Kanai A, Oda H, Wolff L, Honda Z, Ichinohe T, Matsubara A, Suda T, Inaba T, Honda H (2016) Maintenance of the functional integrity of mouse hematopoiesis by EED and promotion of leukemogenesis by EED haploinsufficiency. Sci Rep 6:29454CrossRef
28.
go back to reference Wu Y, Hu H, Zhang W, Li Z, Diao P, Wang D, Zhang W, Wang Y, Yang J, Cheng J (2018) SUZ12 is a novel putative oncogene promoting tumorigenesis in head and neck squamous cell carcinoma. J Cell Mol Med 22:3582–3594CrossRef Wu Y, Hu H, Zhang W, Li Z, Diao P, Wang D, Zhang W, Wang Y, Yang J, Cheng J (2018) SUZ12 is a novel putative oncogene promoting tumorigenesis in head and neck squamous cell carcinoma. J Cell Mol Med 22:3582–3594CrossRef
29.
go back to reference Broux M, Prieto C, Demeyer S, Vanden Bempt M, Alberti-Servera L, Lodewijckx I, Vandepoel R, Mentens N, Gielen O, Jacobs K, Geerdens E, Vicente C, de Bock CE, Cools J (2019) Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood 134:1323–1336CrossRef Broux M, Prieto C, Demeyer S, Vanden Bempt M, Alberti-Servera L, Lodewijckx I, Vandepoel R, Mentens N, Gielen O, Jacobs K, Geerdens E, Vicente C, de Bock CE, Cools J (2019) Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood 134:1323–1336CrossRef
30.
go back to reference Liu C, Shi X, Wang L, Wu Y, Jin F, Bai C, Song Y (2014) SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 35:6073–6082CrossRef Liu C, Shi X, Wang L, Wu Y, Jin F, Bai C, Song Y (2014) SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 35:6073–6082CrossRef
31.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRef Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRef
32.
go back to reference Natsume-Kitatani Y, Mamitsuka H (2016) Classification of promoters based on the combination of core promoter elements exhibits different histone modification patterns. PLoS ONE 11:e0151917CrossRef Natsume-Kitatani Y, Mamitsuka H (2016) Classification of promoters based on the combination of core promoter elements exhibits different histone modification patterns. PLoS ONE 11:e0151917CrossRef
33.
go back to reference Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen C, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10:1262CrossRef Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen C, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10:1262CrossRef
34.
go back to reference Fišerová J, Efenberková M, Sieger T, Maninová M, Uhlířová J, Hozák P (2017) Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci 130:2066–2077CrossRef Fišerová J, Efenberková M, Sieger T, Maninová M, Uhlířová J, Hozák P (2017) Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci 130:2066–2077CrossRef
35.
go back to reference Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350:4383CrossRef Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350:4383CrossRef
36.
go back to reference Brooun A, Gajiwala KS, Deng YL, Liu W, Bolaños B, Bingham P, He YA, Diehl W, Grable N, Kung PP, Sutton S, Maegley KA, Yu X, Stewart AE (2016) Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat Commun 7:11384CrossRef Brooun A, Gajiwala KS, Deng YL, Liu W, Bolaños B, Bingham P, He YA, Diehl W, Grable N, Kung PP, Sutton S, Maegley KA, Yu X, Stewart AE (2016) Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat Commun 7:11384CrossRef
37.
go back to reference Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4407CrossRef Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4407CrossRef
Metadata
Title
Polycomb-like 2 regulates PRC2 components to affect proliferation in glioma cells
Authors
Fei Wang
Yongying Gao
Ye Lv
Yanwei Wu
Yongzhen Guo
Fang Du
Shixiong Wang
Jiaxiang Yu
Xiangmei Cao
P. Andy Li
Publication date
01-06-2020
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2020
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-020-03538-0

Other articles of this Issue 2/2020

Journal of Neuro-Oncology 2/2020 Go to the issue