Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2016

01-08-2016 | Clinical Study

Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma

Authors: Yasuo Iwadate, Tomoo Matsutani, Seiichiro Hirono, Natsuki Shinozaki, Naokatsu Saeki

Published in: Journal of Neuro-Oncology | Issue 1/2016

Login to get access

Abstract

Invasion into surrounding normal brain and resistance to genotoxic therapies are the main devastating aspects of glioblastoma (GBM). These biological features may be associated with the stem cell phenotype, which can be induced through a dedifferentiation process known as epithelial-mesenchymal transition (EMT). We show here that tumor cells around pseudopalisading necrotic areas in human GBM tissues highly express the most important EMT inducer, transforming growth factor (TGF-β), concurrently with the EMT-related transcriptional factor, TWIST. In addition, the stem cell markers CD133 and alkaline phosphatase (ALPL) were also highly expressed around necrotic foci in GBM tissues. The high expression of TGF-β around necrotic regions was significantly correlated with shorter progression-free survival and overall survival in patients with GBM. High expression of stem cell markers, ALPL, CD133, and CD44 was also correlated with poor outcomes. These results collectively support the hypothesis that tissue hypoxia induces the stem cell phenotype through TGF-β-related EMT and contributes to the poor outcome of GBM patients.
Literature
1.
go back to reference Aldape K, Zadeh G, von Deimling A et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848CrossRefPubMed Aldape K, Zadeh G, von Deimling A et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848CrossRefPubMed
3.
go back to reference Iwadate Y, Sakaida T, Hiwasa T et al (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64:2496–2501CrossRefPubMed Iwadate Y, Sakaida T, Hiwasa T et al (2004) Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64:2496–2501CrossRefPubMed
4.
go back to reference Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173CrossRefPubMed Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173CrossRefPubMed
5.
go back to reference Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentral
6.
go back to reference Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M (2013) Investigating the link between molecular subtype of glioblastoma, epithelial- mesenchymal transition, and CD133 cell surface protein. PLoS One 8:e64169CrossRefPubMedPubMedCentral Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M (2013) Investigating the link between molecular subtype of glioblastoma, epithelial- mesenchymal transition, and CD133 cell surface protein. PLoS One 8:e64169CrossRefPubMedPubMedCentral
7.
go back to reference Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral
8.
go back to reference Cooper LAD, Gutman DA, Chisolm C et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Path. 180:2108–2118CrossRefPubMedPubMedCentral Cooper LAD, Gutman DA, Chisolm C et al (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Path. 180:2108–2118CrossRefPubMedPubMedCentral
9.
go back to reference Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia. 59:1169–1180CrossRefPubMed Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia. 59:1169–1180CrossRefPubMed
10.
go back to reference Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335CrossRefPubMed
11.
12.
go back to reference Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed
13.
go back to reference Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K et al (2013) Mesenchymal differentiation mediated by NF-kB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346CrossRefPubMed Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K et al (2013) Mesenchymal differentiation mediated by NF-kB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346CrossRefPubMed
14.
go back to reference Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD, Hu SJ (2013) Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem 20:1974–1984CrossRefPubMed Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD, Hu SJ (2013) Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem 20:1974–1984CrossRefPubMed
15.
go back to reference Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024CrossRefPubMed Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024CrossRefPubMed
16.
go back to reference Ye X-Z, Xu S-L, Xin Y-H et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol 189:444–453CrossRefPubMed Ye X-Z, Xu S-L, Xin Y-H et al (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol 189:444–453CrossRefPubMed
17.
go back to reference Piao Y, Liang J, Holmes L et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14:1379–1392CrossRefPubMedPubMedCentral Piao Y, Liang J, Holmes L et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology 14:1379–1392CrossRefPubMedPubMedCentral
21.
go back to reference Shinojima N, Hossain A, Takezaki T et al (2012) TGF-β mediated homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 73:2333–2344CrossRef Shinojima N, Hossain A, Takezaki T et al (2012) TGF-β mediated homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 73:2333–2344CrossRef
22.
go back to reference Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal (-like) transition as a relevant molecular event in malignant gliomas. Cancer Let. 33:131–138CrossRef Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal (-like) transition as a relevant molecular event in malignant gliomas. Cancer Let. 33:131–138CrossRef
23.
go back to reference Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropath Exp Neurol 65:529–539CrossRefPubMed Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropath Exp Neurol 65:529–539CrossRefPubMed
24.
go back to reference Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cnacer Cell 11:147–160CrossRef Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cnacer Cell 11:147–160CrossRef
25.
go back to reference Theys J, Jutten B, Habets R et al (2011) E-cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radioth Oncol 99:392–397CrossRef Theys J, Jutten B, Habets R et al (2011) E-cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radioth Oncol 99:392–397CrossRef
26.
27.
go back to reference Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129CrossRefPubMedPubMedCentral Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129CrossRefPubMedPubMedCentral
28.
go back to reference Kim Y-H, Yoo K-C, Cui Y-H et al (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141CrossRefPubMed Kim Y-H, Yoo K-C, Cui Y-H et al (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141CrossRefPubMed
29.
go back to reference Zhou YC, Liu JY, Li J et al (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial- mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537CrossRefPubMed Zhou YC, Liu JY, Li J et al (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial- mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537CrossRefPubMed
30.
go back to reference Zhang M, Kleber S, Rohrich M et al (2011) Blockade of TGF-beta signaling by the TGFbetaR-1 kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167CrossRefPubMed Zhang M, Kleber S, Rohrich M et al (2011) Blockade of TGF-beta signaling by the TGFbetaR-1 kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167CrossRefPubMed
31.
go back to reference Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improve radiation tumor therapy. Clin Cancer Res 14:2210–2219CrossRefPubMed Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improve radiation tumor therapy. Clin Cancer Res 14:2210–2219CrossRefPubMed
32.
go back to reference Mahabir R, Tanino M, Elmansuri A et al (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology 16:671–685CrossRefPubMed Mahabir R, Tanino M, Elmansuri A et al (2014) Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology 16:671–685CrossRefPubMed
33.
go back to reference Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed
34.
go back to reference Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral
35.
go back to reference Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184 Evans SM, Judy KD, Dunphy I et al (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184
37.
38.
go back to reference Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2:119–129CrossRefPubMed Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2:119–129CrossRefPubMed
39.
go back to reference Skowronki K, Andrews J, Rodenhiser DI, Coomber BL (2014) Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PlosOne 9: e103243 Skowronki K, Andrews J, Rodenhiser DI, Coomber BL (2014) Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PlosOne 9: e103243
40.
go back to reference Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101CrossRefPubMed Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101CrossRefPubMed
41.
go back to reference Bechnan J, Isakson P, Joel M et al (2014) Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 32:1110–1123CrossRef Bechnan J, Isakson P, Joel M et al (2014) Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 32:1110–1123CrossRef
Metadata
Title
Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma
Authors
Yasuo Iwadate
Tomoo Matsutani
Seiichiro Hirono
Natsuki Shinozaki
Naokatsu Saeki
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2016
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2145-6

Other articles of this Issue 1/2016

Journal of Neuro-Oncology 1/2016 Go to the issue