Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2015

01-07-2015 | Editors' Invited Manuscript

Current challenges in designing GBM trials for immunotherapy

Authors: Shiao-Pei Weathers, Mark R. Gilbert

Published in: Journal of Neuro-Oncology | Issue 3/2015

Login to get access

Abstract

Immune system modulation is evolving into a promising treatment modality in glioblastoma. Our growing understanding of glioma immunobiology has fueled efforts to develop immunotherapeutic strategies to combat this lethal primary brain tumor. Autologous stimulated lymphocytes, immunotherapy with cytokines and dendritic cells, immune checkpoint inhibitors, virotherapy, and tumor or peptide based vaccines are immunotherapy approaches under active investigation. A number of challenges are evident in the design of immunotherapy clinical trials in glioblastoma including patient selection, immune and imaging response monitoring, and evaluation of clinical outcome.
Literature
1.
go back to reference Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef
2.
go back to reference Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091PubMedCentralPubMedCrossRef Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091PubMedCentralPubMedCrossRef
4.
go back to reference Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res 20(14):3651–3659PubMedCrossRef Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res 20(14):3651–3659PubMedCrossRef
5.
go back to reference Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today 15(5):218–224PubMedCrossRef Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today 15(5):218–224PubMedCrossRef
6.
7.
go back to reference Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12PubMedCentralPubMed Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12PubMedCentralPubMed
8.
go back to reference Bullard DE et al (1986) Immunobiology of human gliomas. Semin Oncol 13(1):94–109PubMed Bullard DE et al (1986) Immunobiology of human gliomas. Semin Oncol 13(1):94–109PubMed
9.
go back to reference Owens T et al (1994) Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today 15(12):566–571PubMedCrossRef Owens T et al (1994) Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today 15(12):566–571PubMedCrossRef
10.
go back to reference Stevens A, Kloter I, Roggendorf W (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61(4):738–743PubMedCrossRef Stevens A, Kloter I, Roggendorf W (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61(4):738–743PubMedCrossRef
13.
go back to reference Brooks WH et al (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors characterization of a humoral immunosuppressive factor. J Exp Med 136(6):1631–1647PubMedCentralPubMedCrossRef Brooks WH et al (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors characterization of a humoral immunosuppressive factor. J Exp Med 136(6):1631–1647PubMedCentralPubMedCrossRef
14.
go back to reference Wrann M et al (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 6(6):1633–1636PubMedCentralPubMed Wrann M et al (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 6(6):1633–1636PubMedCentralPubMed
16.
go back to reference Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52(4):401–410PubMedCrossRef Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52(4):401–410PubMedCrossRef
17.
go back to reference Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12(10):370–374PubMedCrossRef Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12(10):370–374PubMedCrossRef
18.
go back to reference Tada M et al (1993) Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8(77)). J Neurooncol 16(1):25–34PubMedCrossRef Tada M et al (1993) Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8(77)). J Neurooncol 16(1):25–34PubMedCrossRef
20.
go back to reference Heimberger AB et al (2002) Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50(1):158–164 discussion 164–6PubMed Heimberger AB et al (2002) Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50(1):158–164 discussion 164–6PubMed
21.
go back to reference Wheeler CJ et al (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10(16):5316–5326PubMedCrossRef Wheeler CJ et al (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10(16):5316–5326PubMedCrossRef
22.
go back to reference Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979PubMedCrossRef Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979PubMedCrossRef
23.
go back to reference Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8PubMedCrossRef Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8PubMedCrossRef
24.
25.
go back to reference Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28(31):4722–4729PubMedCentralPubMedCrossRef Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28(31):4722–4729PubMedCentralPubMedCrossRef
26.
go back to reference Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13(3):324–333PubMedCentralPubMedCrossRef Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13(3):324–333PubMedCentralPubMedCrossRef
27.
go back to reference Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281PubMedCrossRef Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281PubMedCrossRef
29.
go back to reference Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526PubMedCrossRef Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526PubMedCrossRef
30.
go back to reference Lebbe C et al (2010) Ipilimumab improves survival in previously treated, advanced melanoma patients with poor prognostic factors: subgroup analysis from a phase III trial. Annu Oncol 21:401 Lebbe C et al (2010) Ipilimumab improves survival in previously treated, advanced melanoma patients with poor prognostic factors: subgroup analysis from a phase III trial. Annu Oncol 21:401
31.
go back to reference Schartz NE et al (2010) Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res 20(3):247–250PubMed Schartz NE et al (2010) Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res 20(3):247–250PubMed
32.
go back to reference Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef
33.
go back to reference Grauer OM et al (2007) CD4+ FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105PubMedCrossRef Grauer OM et al (2007) CD4+ FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105PubMedCrossRef
34.
35.
37.
go back to reference Fueyo J et al (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95(9):652–660PubMedCrossRef Fueyo J et al (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95(9):652–660PubMedCrossRef
38.
go back to reference Jiang H et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414PubMedCrossRef Jiang H et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414PubMedCrossRef
39.
41.
go back to reference Uhl M et al (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991–1005PubMedCrossRef Uhl M et al (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991–1005PubMedCrossRef
42.
44.
go back to reference Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510PubMedCrossRef Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510PubMedCrossRef
45.
go back to reference Murat A et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024PubMedCrossRef Murat A et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024PubMedCrossRef
46.
go back to reference Suntharalingam G et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028PubMedCrossRef Suntharalingam G et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028PubMedCrossRef
47.
go back to reference Wen PY et al (2010) Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 12(1):68–75PubMedCrossRef Wen PY et al (2010) Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 12(1):68–75PubMedCrossRef
48.
go back to reference Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697PubMedCrossRef Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697PubMedCrossRef
49.
go back to reference Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030PubMedCrossRef Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030PubMedCrossRef
50.
51.
go back to reference Wikstrand CJ, Bigner DD (1981) Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells: production of reactive antisera and absence of EAE induction. J Neuroimmunol 1(3):249–260PubMedCrossRef Wikstrand CJ, Bigner DD (1981) Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells: production of reactive antisera and absence of EAE induction. J Neuroimmunol 1(3):249–260PubMedCrossRef
52.
go back to reference Lammert A et al (2013) Hypophysitis caused by ipilimumab in cancer patients: hormone replacement or immunosuppressive therapy. Exp Clin Endocrinol Diabetes 121(10):581–587PubMedCrossRef Lammert A et al (2013) Hypophysitis caused by ipilimumab in cancer patients: hormone replacement or immunosuppressive therapy. Exp Clin Endocrinol Diabetes 121(10):581–587PubMedCrossRef
53.
go back to reference Orgogozo JM et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54PubMedCrossRef Orgogozo JM et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54PubMedCrossRef
54.
go back to reference Zitvogel L et al (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88PubMedCrossRef Zitvogel L et al (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88PubMedCrossRef
55.
Metadata
Title
Current challenges in designing GBM trials for immunotherapy
Authors
Shiao-Pei Weathers
Mark R. Gilbert
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2015
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-015-1716-2

Other articles of this Issue 3/2015

Journal of Neuro-Oncology 3/2015 Go to the issue