Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2014

01-09-2014 | Laboratory Investigation

In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models

Authors: Cindy Leten, Tom Struys, Tom Dresselaers, Uwe Himmelreich

Published in: Journal of Neuro-Oncology | Issue 2/2014

Login to get access

Abstract

Blood brain barrier (BBB) disruption is used (pre)clinically as a measure for brain tumor malignancy and grading. During treatment it is one of the parameters followed rigorously to assess therapeutic efficacy. In animal models, both invasive and non-invasive methods are used to determine BBB disruption, among them Evans blue injection prior to sacrifice and T1-weighted magnetic resonance imaging (MRI) post contrast injection. In this study, we have assessed the BBB integrity with the methods mentioned above in two experimental high grade glioma models, namely the GL261 mouse glioblastoma model and the Hs683 human oligodendroglioma model. The GL261 model showed clear BBB integrity loss with both, contrast-enhanced (CE) MRI and Evans blue staining. In contrast, the Hs683 model only displayed BBB disruption with CE-MRI, which was not evident on Evans blue staining, indicating a limited BBB disruption. These results clearly indicate the importance of assessing the BBB integrity status using appropriate methods. Especially when using large therapeutic molecules that have difficulties crossing the BBB, care should be taken with the appropriate BBB disruption assessment studies.
Literature
1.
go back to reference Zagzag D et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80(6):837–849PubMedCrossRef Zagzag D et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80(6):837–849PubMedCrossRef
2.
go back to reference Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32(3):253–265PubMedCrossRef Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32(3):253–265PubMedCrossRef
3.
go back to reference Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382PubMedCrossRef Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382PubMedCrossRef
4.
go back to reference Roberts HC et al (2002) Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 9(Suppl 1):S151–S155PubMedCrossRef Roberts HC et al (2002) Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 9(Suppl 1):S151–S155PubMedCrossRef
5.
go back to reference Just M et al (1991) MRI-assisted radiation therapy planning of brain tumors–clinical experiences in 17 patients. Magn Reson Imaging 9(2):173–177PubMedCrossRef Just M et al (1991) MRI-assisted radiation therapy planning of brain tumors–clinical experiences in 17 patients. Magn Reson Imaging 9(2):173–177PubMedCrossRef
6.
go back to reference Roberts HC et al (2002) Dynamic, contrast-enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: report of two cases. AJNR Am J Neuroradiol 23(5):828–832PubMed Roberts HC et al (2002) Dynamic, contrast-enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: report of two cases. AJNR Am J Neuroradiol 23(5):828–832PubMed
7.
go back to reference Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659(1–2):62–66PubMedCrossRef Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659(1–2):62–66PubMedCrossRef
8.
go back to reference Preston E, Webster J (2002) Differential passage of [14C]sucrose and [3H]inulin across rat blood-brain barrier after cerebral ischemia. Acta Neuropathol 103(3):237–242PubMedCrossRef Preston E, Webster J (2002) Differential passage of [14C]sucrose and [3H]inulin across rat blood-brain barrier after cerebral ischemia. Acta Neuropathol 103(3):237–242PubMedCrossRef
9.
go back to reference Loveless ME et al (2011) A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-MRI in small animals. Magn Reson Med 67(1):226–236PubMedCentralPubMedCrossRef Loveless ME et al (2011) A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-MRI in small animals. Magn Reson Med 67(1):226–236PubMedCentralPubMedCrossRef
10.
go back to reference Cha S et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49(5):848–855PubMedCrossRef Cha S et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49(5):848–855PubMedCrossRef
11.
go back to reference Matuskova M et al (2009) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290(1):58–67PubMedCrossRef Matuskova M et al (2009) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290(1):58–67PubMedCrossRef
12.
go back to reference Hata, N., et al., 2010, Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery. 66(1): p. 144–156; discussion 156–157 Hata, N., et al., 2010, Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery. 66(1): p. 144–156; discussion 156–157
14.
go back to reference Szatmari T et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553PubMedCrossRef Szatmari T et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553PubMedCrossRef
15.
go back to reference Branle F et al (2002) Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer 95(3):641–655PubMedCrossRef Branle F et al (2002) Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer 95(3):641–655PubMedCrossRef
16.
go back to reference Vandeputte C et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13(4):663–671PubMedCrossRef Vandeputte C et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13(4):663–671PubMedCrossRef
17.
19.
go back to reference Lee SW et al (2006) Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 29(4):265–275PubMedCrossRef Lee SW et al (2006) Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 29(4):265–275PubMedCrossRef
20.
go back to reference Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358PubMedCrossRef Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358PubMedCrossRef
21.
go back to reference Belot N et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390PubMedCrossRef Belot N et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390PubMedCrossRef
22.
go back to reference Lamoral-Theys D et al (2010) Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia 12(1):69–79PubMedCentralPubMed Lamoral-Theys D et al (2010) Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia 12(1):69–79PubMedCentralPubMed
23.
go back to reference Wolburg H et al (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33(5–6):579–589PubMedCrossRef Wolburg H et al (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33(5–6):579–589PubMedCrossRef
24.
go back to reference Mathieu V et al (2008) Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 10(12):1383–1392PubMedCentralPubMed Mathieu V et al (2008) Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 10(12):1383–1392PubMedCentralPubMed
25.
go back to reference Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRef Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRef
26.
go back to reference Szerlip NJ et al (2011) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109(8):3041–3046CrossRef Szerlip NJ et al (2011) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109(8):3041–3046CrossRef
27.
go back to reference Barajas RF Jr et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14(7):942–954PubMedCentralPubMedCrossRef Barajas RF Jr et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14(7):942–954PubMedCentralPubMedCrossRef
28.
go back to reference Kremer S et al (2013) Evaluation of an albumin-binding gadolinium contrast agent in multiple sclerosis. Neurology 81(3):206–210PubMedCrossRef Kremer S et al (2013) Evaluation of an albumin-binding gadolinium contrast agent in multiple sclerosis. Neurology 81(3):206–210PubMedCrossRef
Metadata
Title
In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models
Authors
Cindy Leten
Tom Struys
Tom Dresselaers
Uwe Himmelreich
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1514-2

Other articles of this Issue 2/2014

Journal of Neuro-Oncology 2/2014 Go to the issue