Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2010

01-12-2010 | Topic Review

Effects of irradiation on tumor cell survival, invasion and angiogenesis

Authors: Odysseas Kargiotis, Aliki Geka, Jasti S. Rao, Athanasios P. Kyritsis

Published in: Journal of Neuro-Oncology | Issue 3/2010

Login to get access

Abstract

Ionizing irradiation is a widely applied therapeutic method for the majority of solid malignant neoplasms, including brain tumors where, depending on localization, this might often be the only feasible primary intervention.Without doubt, it has been proved to be a fundamental tool available in the battlefield against cancer, offering a clear survival benefit in most cases. However, numerous studies have associated tumor irradiation with enhanced aggressive phenotype of the remaining cancer cells. A cell population manages to survive after the exposure, either because it receives sublethal doses and/or because it successfully utilizes the repair mechanisms. The biology of irradiated cells is altered leading to up-regulation of genes that favor cell survival, invasion and angiogenesis. In addition, hypoxia within the tumor mass limits the cytotoxicity of irradiation, whereas irradiation itself may worsen hypoxic conditions, which also contribute to the generation of resistant cells. Activation of cell surface receptors, such as the epidermal growth factor receptor, utilization of signaling pathways, and over-expression of cytokines, proteases and growth factors, for example the matrix metalloproteinases and vascular endothelial growth factor, protect tumor and non-tumor cells from apoptosis, increase their ability to invade to adjacent or distant areas, and trigger angiogenesis. This review will try to unfold the various molecular events and interactions that control tumor cell survival, invasion and angiogenesis and which are elicited or influenced by irradiation of the tumor mass, and to emphasize the importance of combining irradiation therapy with molecular targeting.
Literature
1.
go back to reference Owen JB, Coia LR, Hanks GE (1992) Recent patterns of growth in radiation therapy facilities in the United States: a patterns of care study report. Int J Radiat Oncol Biol Phys 24(5):983–986PubMed Owen JB, Coia LR, Hanks GE (1992) Recent patterns of growth in radiation therapy facilities in the United States: a patterns of care study report. Int J Radiat Oncol Biol Phys 24(5):983–986PubMed
2.
go back to reference Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6(7):520–528PubMedCrossRef Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6(7):520–528PubMedCrossRef
3.
go back to reference Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547PubMed Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547PubMed
4.
go back to reference Levin VA, Maor MH, Thall PF, Yung WK, Bruner J, Sawaya R, Kyritsis AP, Leeds N, Woo S, Rodriguez L et al (1995) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by vincristine chemotherapy for the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 33(2):357–364PubMed Levin VA, Maor MH, Thall PF, Yung WK, Bruner J, Sawaya R, Kyritsis AP, Leeds N, Woo S, Rodriguez L et al (1995) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by vincristine chemotherapy for the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 33(2):357–364PubMed
5.
go back to reference Levin VA, Yung WK, Bruner J, Kyritsis A, Leeds N, Gleason MJ, Hess KR, Meyers CA, Ictech SA, Chang E, Maor MH (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1):58–66PubMed Levin VA, Yung WK, Bruner J, Kyritsis A, Leeds N, Gleason MJ, Hess KR, Meyers CA, Ictech SA, Chang E, Maor MH (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1):58–66PubMed
6.
go back to reference Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, Yanke BR (1992) The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 24(4):767–775PubMed Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, Yanke BR (1992) The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 24(4):767–775PubMed
7.
go back to reference Levin VA, Giglio P, Kyritsis AP (1995) The management of gliomas, medulloblastoma, CNS germ cell tumors, and carcinomas metastatic to the CNS. In: Cavalli F, Hansen H, Kaye S (eds) Textbook of medical oncology. Martin Dunitz, London, pp 415–430 Levin VA, Giglio P, Kyritsis AP (1995) The management of gliomas, medulloblastoma, CNS germ cell tumors, and carcinomas metastatic to the CNS. In: Cavalli F, Hansen H, Kaye S (eds) Textbook of medical oncology. Martin Dunitz, London, pp 415–430
8.
go back to reference Loeffler J, Alexander EI, Shea WM, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385PubMed Loeffler J, Alexander EI, Shea WM, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385PubMed
9.
go back to reference Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406PubMedCrossRef Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406PubMedCrossRef
10.
go back to reference Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360PubMedCrossRef Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360PubMedCrossRef
11.
go back to reference Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971PubMedCrossRef Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971PubMedCrossRef
12.
go back to reference Sonveaux P, Brouet A, Havaux X et al (2003) Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 63(5):1012–1019PubMed Sonveaux P, Brouet A, Havaux X et al (2003) Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 63(5):1012–1019PubMed
13.
go back to reference Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750PubMed Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750PubMed
14.
go back to reference Von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metastasis 9(2):77–104CrossRef Von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metastasis 9(2):77–104CrossRef
15.
go back to reference Abdollahi A, Lipson KE, Han X et al (2003) SU5416 and SU668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763PubMed Abdollahi A, Lipson KE, Han X et al (2003) SU5416 and SU668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63(13):3755–3763PubMed
16.
go back to reference Hovinga KE, Stalpers LJ, van Bree C et al (2005) Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance? J Neurooncol 74(2):99–103PubMedCrossRef Hovinga KE, Stalpers LJ, van Bree C et al (2005) Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance? J Neurooncol 74(2):99–103PubMedCrossRef
17.
go back to reference Sheng-Hua C, Yan-Bin M, Zhi-An Z et al (2007) Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol 68(6):610–613PubMedCrossRef Sheng-Hua C, Yan-Bin M, Zhi-An Z et al (2007) Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol 68(6):610–613PubMedCrossRef
18.
go back to reference Dent P, Reardon DB, Park JS et al (1999) Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10(8):2493–2506PubMed Dent P, Reardon DB, Park JS et al (1999) Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10(8):2493–2506PubMed
19.
go back to reference Yacoub A, Miller A, Caron RW (2006) Radiotherapy-induced signal transduction. Endocr Relat Cancer 13(Suppl 1):S99–114PubMedCrossRef Yacoub A, Miller A, Caron RW (2006) Radiotherapy-induced signal transduction. Endocr Relat Cancer 13(Suppl 1):S99–114PubMedCrossRef
20.
go back to reference Cosaceanu D, Budgie RA, Lewensohn R, Dricu A (2007) Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26(17):2423–2434PubMedCrossRef Cosaceanu D, Budgie RA, Lewensohn R, Dricu A (2007) Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26(17):2423–2434PubMedCrossRef
21.
go back to reference Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22(37):5885–5896PubMedCrossRef Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22(37):5885–5896PubMedCrossRef
22.
go back to reference Kargiotis O, Chetty C, Gondi CS et al (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27(35):4830–4840PubMedCrossRef Kargiotis O, Chetty C, Gondi CS et al (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27(35):4830–4840PubMedCrossRef
23.
go back to reference Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25(53):7009–7018PubMedCrossRef Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25(53):7009–7018PubMedCrossRef
24.
go back to reference Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66(17):8511–8519PubMedCrossRef Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66(17):8511–8519PubMedCrossRef
25.
go back to reference Kargiotis O, Chetty C, Gogineni V et al (2008) uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol 33(5):937–947PubMed Kargiotis O, Chetty C, Gogineni V et al (2008) uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol 33(5):937–947PubMed
26.
go back to reference Cao Q, Cai W, Li T et al (2006) Combination of integrin siRNA and irradiation for breast cancer therapy. Biochem Biophys Res Commun 351(3):726–732PubMedCrossRef Cao Q, Cai W, Li T et al (2006) Combination of integrin siRNA and irradiation for breast cancer therapy. Biochem Biophys Res Commun 351(3):726–732PubMedCrossRef
27.
go back to reference Sasaki MS (2009) Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 85(1):26–47PubMedCrossRef Sasaki MS (2009) Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol 85(1):26–47PubMedCrossRef
28.
go back to reference Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20PubMedCrossRef Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20PubMedCrossRef
29.
go back to reference Löbrich M, Rydberg B, Cooper PK (1995) Repair of X-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci USA 92(26):12050–12054PubMedCrossRef Löbrich M, Rydberg B, Cooper PK (1995) Repair of X-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci USA 92(26):12050–12054PubMedCrossRef
30.
go back to reference Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ (2004) Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24(20):9207–9220PubMedCrossRef Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ (2004) Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24(20):9207–9220PubMedCrossRef
31.
go back to reference Xue L, Yu D, Furusawa Y et al (2009) Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Mutat Res 670(1–2):15–23PubMed Xue L, Yu D, Furusawa Y et al (2009) Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Mutat Res 670(1–2):15–23PubMed
32.
go back to reference Choudhury A, Cuddihy A, Bristow RG (2006) Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 16(1):51–58PubMedCrossRef Choudhury A, Cuddihy A, Bristow RG (2006) Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 16(1):51–58PubMedCrossRef
33.
go back to reference Ivanov VN, Zhou H, Partridge MA, Hei TK (2009) Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells. Cancer Res 69(8):3510–3519PubMedCrossRef Ivanov VN, Zhou H, Partridge MA, Hei TK (2009) Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells. Cancer Res 69(8):3510–3519PubMedCrossRef
34.
go back to reference Harney J, Short SC, Shah N, Joiner M, Saunders MI (2004) Low dose hyper-radiosensitivity in metastatic tumors. Int J Radiat Oncol Biol Phys 59(4):1190–1195PubMedCrossRef Harney J, Short SC, Shah N, Joiner M, Saunders MI (2004) Low dose hyper-radiosensitivity in metastatic tumors. Int J Radiat Oncol Biol Phys 59(4):1190–1195PubMedCrossRef
35.
go back to reference Enns L, Bogen KT, Wizniak J, Murtha AD, Weinfeld M (2004) Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol Cancer Res 2(10):557–566PubMed Enns L, Bogen KT, Wizniak J, Murtha AD, Weinfeld M (2004) Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol Cancer Res 2(10):557–566PubMed
36.
go back to reference Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52(22):6394–6396PubMed Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52(22):6394–6396PubMed
37.
go back to reference Ojima M, Ban N, Kai M (2008) DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res 170(3):365–371PubMedCrossRef Ojima M, Ban N, Kai M (2008) DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res 170(3):365–371PubMedCrossRef
38.
go back to reference Nagasawa H, Cremesti A, Kolesnick R, Fuks Z, Little JB (2002) Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Res 62(9):2531–2534PubMed Nagasawa H, Cremesti A, Kolesnick R, Fuks Z, Little JB (2002) Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Res 62(9):2531–2534PubMed
39.
go back to reference Lehnert BE, Goodwin EH, Deshpande A (1997) Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 57(11):2164–2171PubMed Lehnert BE, Goodwin EH, Deshpande A (1997) Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 57(11):2164–2171PubMed
40.
go back to reference Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57(18):3963–3971PubMed Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57(18):3963–3971PubMed
41.
go back to reference Wu LJ, Randers-Pehrson G, Xu A et al (1999) Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA 96(9):4959–4964PubMedCrossRef Wu LJ, Randers-Pehrson G, Xu A et al (1999) Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA 96(9):4959–4964PubMedCrossRef
42.
go back to reference Matsumoto H, Hayashi S, Hatashita M et al (2001) Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155(3):387–396PubMedCrossRef Matsumoto H, Hayashi S, Hatashita M et al (2001) Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155(3):387–396PubMedCrossRef
43.
go back to reference Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406PubMedCrossRef Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB (2002) Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 277(18):15400–15406PubMedCrossRef
44.
go back to reference Kamochi N, Nakashima M, Aoki S et al (2008) Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99(12):2417–2427PubMedCrossRef Kamochi N, Nakashima M, Aoki S et al (2008) Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99(12):2417–2427PubMedCrossRef
45.
go back to reference Yacoub A, Park JS, Qiao L, Dent P, Hagan MP (2001) MAPK dependence of DNA damage repair: ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol 77(10):1067–1078PubMedCrossRef Yacoub A, Park JS, Qiao L, Dent P, Hagan MP (2001) MAPK dependence of DNA damage repair: ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol 77(10):1067–1078PubMedCrossRef
46.
go back to reference Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67(3):1046–1053PubMedCrossRef Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67(3):1046–1053PubMedCrossRef
47.
go back to reference Grant S, Qiao L, Dent P (2002) Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci 7:d376–d389PubMedCrossRef Grant S, Qiao L, Dent P (2002) Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci 7:d376–d389PubMedCrossRef
48.
go back to reference Warenius HM, Jones MD, Thompson CC (1996) Exit from G2 phase after 2 Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF1 proto-oncogene. Radiat Res 146(5):485–493PubMedCrossRef Warenius HM, Jones MD, Thompson CC (1996) Exit from G2 phase after 2 Gy gamma irradiation is faster in radiosensitive human cells with high expression of the RAF1 proto-oncogene. Radiat Res 146(5):485–493PubMedCrossRef
49.
go back to reference Carapancea M, Cosaceanu D, Budiu R et al (2007) Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. J Neurooncol 85(3):245–254PubMedCrossRef Carapancea M, Cosaceanu D, Budiu R et al (2007) Dual targeting of IGF-1R and PDGFR inhibits proliferation in high-grade gliomas cells and induces radiosensitivity in JNK-1 expressing cells. J Neurooncol 85(3):245–254PubMedCrossRef
50.
go back to reference Bulgin D, Podtcheko A, Takakura S et al (2006) Selective pharmacologic inhibition of c-Jun NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of terminal growth arrest. Thyroid 16(3):217–224PubMedCrossRef Bulgin D, Podtcheko A, Takakura S et al (2006) Selective pharmacologic inhibition of c-Jun NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of terminal growth arrest. Thyroid 16(3):217–224PubMedCrossRef
51.
go back to reference Wang X, McGowan CH, Zhao M et al (2000) Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 20(13):4543–4552PubMedCrossRef Wang X, McGowan CH, Zhao M et al (2000) Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 20(13):4543–4552PubMedCrossRef
52.
go back to reference Schuurbiers OC, Kaanders JH, van der Heijden HF, Dekhuijzen RP, Oyen WJ, Bussink J (2009) The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol 4(6):761–767PubMedCrossRef Schuurbiers OC, Kaanders JH, van der Heijden HF, Dekhuijzen RP, Oyen WJ, Bussink J (2009) The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol 4(6):761–767PubMedCrossRef
53.
go back to reference Leverrier Y, Thomas J, Mathieu AL, Low W, Blanquier B, Marvel J (1999) Role of PI3-kinase in Bcl-X induction and apoptosis inhibition mediated by IL-3 or IGF-1 in Baf-3 cells. Cell Death Differ 6(3):290–296PubMedCrossRef Leverrier Y, Thomas J, Mathieu AL, Low W, Blanquier B, Marvel J (1999) Role of PI3-kinase in Bcl-X induction and apoptosis inhibition mediated by IL-3 or IGF-1 in Baf-3 cells. Cell Death Differ 6(3):290–296PubMedCrossRef
54.
go back to reference Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2):550–555PubMedCrossRef Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2):550–555PubMedCrossRef
55.
go back to reference Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17(4):761–767PubMedCrossRef Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17(4):761–767PubMedCrossRef
56.
go back to reference Gupta AK, Bakanauskas VJ, Cerniglia GJ et al (2001) The Ras radiation resistance pathway. Cancer Res 61(10):4278–4282PubMed Gupta AK, Bakanauskas VJ, Cerniglia GJ et al (2001) The Ras radiation resistance pathway. Cancer Res 61(10):4278–4282PubMed
57.
go back to reference Choi JA, Park MT, Kang CM et al (2004) Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling pathways. Oncogene 23(1):9–20PubMedCrossRef Choi JA, Park MT, Kang CM et al (2004) Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling pathways. Oncogene 23(1):9–20PubMedCrossRef
58.
go back to reference Rodemann HP, Dittmann K, Toulany M (2007) Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 83(11–12):781–791PubMedCrossRef Rodemann HP, Dittmann K, Toulany M (2007) Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 83(11–12):781–791PubMedCrossRef
59.
go back to reference Toulany M, Kasten-Pisula U, Brammer I et al (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12(13):4119–4126PubMedCrossRef Toulany M, Kasten-Pisula U, Brammer I et al (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12(13):4119–4126PubMedCrossRef
60.
go back to reference Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62(1):200–207PubMed Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62(1):200–207PubMed
61.
go back to reference Valerie K, Yacoub A, Hagan MP et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801PubMedCrossRef Valerie K, Yacoub A, Hagan MP et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801PubMedCrossRef
62.
63.
go back to reference Guerra LE, Smith RM, Kaminski A, Lagios MD, Silverstein MJ (2008) Invasive local recurrence increased after radiation therapy for ductal carcinoma in situ. Am J Surg 196(4):552–555PubMedCrossRef Guerra LE, Smith RM, Kaminski A, Lagios MD, Silverstein MJ (2008) Invasive local recurrence increased after radiation therapy for ductal carcinoma in situ. Am J Surg 196(4):552–555PubMedCrossRef
64.
go back to reference Chung YL, Jian JJ, Cheng SH et al (2006) Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2706–2715PubMedCrossRef Chung YL, Jian JJ, Cheng SH et al (2006) Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2706–2715PubMedCrossRef
65.
go back to reference Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211PubMed Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211PubMed
66.
go back to reference Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18PubMedCrossRef Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18PubMedCrossRef
67.
go back to reference Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F (2007) Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol 107(3):500–504PubMedCrossRef Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F (2007) Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol 107(3):500–504PubMedCrossRef
68.
go back to reference Andarawewa KL, Erickson AC, Chou WS et al (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67(18):8662–8670PubMedCrossRef Andarawewa KL, Erickson AC, Chou WS et al (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67(18):8662–8670PubMedCrossRef
69.
go back to reference Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43(7):1214–1224PubMedCrossRef Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43(7):1214–1224PubMedCrossRef
70.
go back to reference Hwang SY, Jung JW, Jeong JS et al (2006) Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer 118(8):2056–2063PubMedCrossRef Hwang SY, Jung JW, Jeong JS et al (2006) Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer 118(8):2056–2063PubMedCrossRef
71.
go back to reference Baluna RG, Eng TY, Thomas CR (2006) Adhesion molecules in radiotherapy. Radiat Res 166(6):819–831PubMedCrossRef Baluna RG, Eng TY, Thomas CR (2006) Adhesion molecules in radiotherapy. Radiat Res 166(6):819–831PubMedCrossRef
72.
go back to reference Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543PubMed Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543PubMed
73.
go back to reference Monferran S, Skuli N, Delmas C et al (2008) Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer 123(2):357–364PubMedCrossRef Monferran S, Skuli N, Delmas C et al (2008) Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB. Int J Cancer 123(2):357–364PubMedCrossRef
74.
go back to reference Monnier Y, Farmer P, Bieler G et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331PubMedCrossRef Monnier Y, Farmer P, Bieler G et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331PubMedCrossRef
75.
76.
go back to reference Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501PubMedCrossRef Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501PubMedCrossRef
77.
go back to reference Qian LW, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227PubMed Qian LW, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227PubMed
78.
go back to reference Trog D, Yeghiazaryan K, Fountoulakis M et al (2006) Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542(1–3):8–15PubMedCrossRef Trog D, Yeghiazaryan K, Fountoulakis M et al (2006) Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542(1–3):8–15PubMedCrossRef
79.
go back to reference Speake WJ, Dean RA, Kumar A, Morris TM, Scholefield JH, Watson SA (2005) Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. Eur J Surg Oncol 3(8):869–874CrossRef Speake WJ, Dean RA, Kumar A, Morris TM, Scholefield JH, Watson SA (2005) Radiation induced MMP expression from rectal cancer is short lived but contributes to in vitro invasion. Eur J Surg Oncol 3(8):869–874CrossRef
80.
go back to reference Cordes N, Hansmeier B, Beinke C, Meineke V, van Beuningen D (2003) Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br J Cancer 89(11):2122–2132PubMedCrossRef Cordes N, Hansmeier B, Beinke C, Meineke V, van Beuningen D (2003) Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br J Cancer 89(11):2122–2132PubMedCrossRef
81.
go back to reference Chetty C, Bhoopathi P, Rao JS, Lakka SS (2009) Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer 124(10):2468–2477PubMedCrossRef Chetty C, Bhoopathi P, Rao JS, Lakka SS (2009) Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer 124(10):2468–2477PubMedCrossRef
82.
go back to reference Paquette B, Baptiste C, Therriault H, Arguin G, Plouffe B, Lemay R (2007) In vitro irradiation of basement membrane enhances the invasiveness of breast cancer cells. Br J Cancer 97(11):1505–1512PubMedCrossRef Paquette B, Baptiste C, Therriault H, Arguin G, Plouffe B, Lemay R (2007) In vitro irradiation of basement membrane enhances the invasiveness of breast cancer cells. Br J Cancer 97(11):1505–1512PubMedCrossRef
83.
go back to reference Wei LH, Lai KP, Chen CA et al (2005) Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene 24(3):390–398PubMedCrossRef Wei LH, Lai KP, Chen CA et al (2005) Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene 24(3):390–398PubMedCrossRef
84.
go back to reference Gogineni VR, Kargiotis O, Klopfenstein JD, Gujrati M, Dinh DH, Rao JS (2009) RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. Int J Oncol 34(1):209–218PubMed Gogineni VR, Kargiotis O, Klopfenstein JD, Gujrati M, Dinh DH, Rao JS (2009) RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. Int J Oncol 34(1):209–218PubMed
85.
go back to reference Jadhav U, Mohanam S (2006) Response of neuroblastoma cells to ionizing radiation: modulation of in vitro invasiveness and angiogenesis of human microvascular endothelial cells. Int J Oncol 29(6):1525–1531PubMed Jadhav U, Mohanam S (2006) Response of neuroblastoma cells to ionizing radiation: modulation of in vitro invasiveness and angiogenesis of human microvascular endothelial cells. Int J Oncol 29(6):1525–1531PubMed
86.
go back to reference Zhai GG, Malhotra R, Delaney M et al (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol 76(3):227–237PubMedCrossRef Zhai GG, Malhotra R, Delaney M et al (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol 76(3):227–237PubMedCrossRef
87.
go back to reference Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62(6):1915–1919PubMed Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62(6):1915–1919PubMed
88.
go back to reference Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222PubMedCrossRef Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222PubMedCrossRef
89.
go back to reference Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396PubMedCrossRef Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396PubMedCrossRef
90.
go back to reference Koch CJ, Kruuv J, Frey HE (1973) Variation in radiation response of mammalian cells as a function of oxygen tension. Radiat Res 53(1):33–42PubMedCrossRef Koch CJ, Kruuv J, Frey HE (1973) Variation in radiation response of mammalian cells as a function of oxygen tension. Radiat Res 53(1):33–42PubMedCrossRef
91.
go back to reference Chapman JD, Dugle DL, Reuvers AP, Meeker BE, Borsa J (1974) Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 26(4):383–389PubMedCrossRef Chapman JD, Dugle DL, Reuvers AP, Meeker BE, Borsa J (1974) Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 26(4):383–389PubMedCrossRef
92.
go back to reference Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9(6):1957–1971PubMed Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9(6):1957–1971PubMed
93.
go back to reference Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6(1):46–58PubMedCrossRef Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6(1):46–58PubMedCrossRef
94.
go back to reference Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378PubMed Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378PubMed
95.
go back to reference Chandel NS, McClintock DS, Feliciano CE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138PubMedCrossRef Chandel NS, McClintock DS, Feliciano CE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138PubMedCrossRef
96.
go back to reference Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78(3):281–293PubMedCrossRef Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol 78(3):281–293PubMedCrossRef
97.
go back to reference Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26(54):7508–7516PubMedCrossRef Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26(54):7508–7516PubMedCrossRef
98.
go back to reference Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441PubMedCrossRef Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441PubMedCrossRef
99.
go back to reference Singh-Gupta V, Zhang H, Banerjee S et al (2009) Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer 124(7):1675–1684PubMedCrossRef Singh-Gupta V, Zhang H, Banerjee S et al (2009) Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer 124(7):1675–1684PubMedCrossRef
100.
go back to reference Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69(4):1624–1632PubMedCrossRef Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69(4):1624–1632PubMedCrossRef
101.
go back to reference Skuli N, Monferran S, Delmas C et al (2009) Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 69(8):3308–3316PubMedCrossRef Skuli N, Monferran S, Delmas C et al (2009) Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 69(8):3308–3316PubMedCrossRef
102.
go back to reference Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4(11):1717–1728PubMedCrossRef Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4(11):1717–1728PubMedCrossRef
103.
go back to reference Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E (2004) Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int J Cancer 110(6):807–814PubMedCrossRef Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E (2004) Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int J Cancer 110(6):807–814PubMedCrossRef
104.
go back to reference Solberg TD, Nearman J, Mullins J, Li S, Baranowska-Kortylewicz J (2008) Correlation between tumor growth delay and expression of cancer and host VEGF, VEGFR2, and osteopontin in response to radiotherapy. Int J Radiat Oncol Biol Phys 72(3):918–926PubMed Solberg TD, Nearman J, Mullins J, Li S, Baranowska-Kortylewicz J (2008) Correlation between tumor growth delay and expression of cancer and host VEGF, VEGFR2, and osteopontin in response to radiotherapy. Int J Radiat Oncol Biol Phys 72(3):918–926PubMed
105.
go back to reference Nojiri K, Iwakawa M, Ichikawa Y et al (2009) The proangiogenic factor ephrin-A1 is up-regulated in radioresistant murine tumor by irradiation. Exp Biol Med 234(1):112–122CrossRef Nojiri K, Iwakawa M, Ichikawa Y et al (2009) The proangiogenic factor ephrin-A1 is up-regulated in radioresistant murine tumor by irradiation. Exp Biol Med 234(1):112–122CrossRef
106.
go back to reference Tabatabai G, Frank B, Wick A et al (2007) Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann Neurol 61(2):153–161PubMedCrossRef Tabatabai G, Frank B, Wick A et al (2007) Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann Neurol 61(2):153–161PubMedCrossRef
107.
go back to reference Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P (2005) Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest 85(6):756–767PubMedCrossRef Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P (2005) Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest 85(6):756–767PubMedCrossRef
108.
go back to reference Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11(17):6270–6279PubMedCrossRef Abdollahi A, Griggs DW, Zieher H et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11(17):6270–6279PubMedCrossRef
109.
go back to reference Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40(1):46–54PubMedCrossRef Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40(1):46–54PubMedCrossRef
110.
go back to reference Sonveaux P, Dessy C, Brouet A et al (2002) Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J 16(14):1979–1981PubMed Sonveaux P, Dessy C, Brouet A et al (2002) Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J 16(14):1979–1981PubMed
111.
go back to reference Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP, Béliveau R (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biol Ther 2(6):642–649PubMed Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP, Béliveau R (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biol Ther 2(6):642–649PubMed
112.
go back to reference Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971PubMedCrossRef Bozec A, Formento P, Ciccolini J et al (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4(12):1962–1971PubMedCrossRef
113.
go back to reference Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95(19):1440–1452PubMed Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95(19):1440–1452PubMed
114.
go back to reference Ahmad M, Khurana NR, Jaberi JE (2007) Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 73(1):14–19PubMedCrossRef Ahmad M, Khurana NR, Jaberi JE (2007) Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 73(1):14–19PubMedCrossRef
115.
go back to reference Mao XW (2006) A quantitative study of the effects of ionizing radiation on endothelial cells and capillary-like network formation. Technol Cancer Res Treat 5(2):127–134PubMed Mao XW (2006) A quantitative study of the effects of ionizing radiation on endothelial cells and capillary-like network formation. Technol Cancer Res Treat 5(2):127–134PubMed
116.
go back to reference Svagzdys S, Lesauskaite V, Pavalkis D, Nedzelskiene I, Pranys D, Tamelis A (2009) Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer 9:95PubMedCrossRef Svagzdys S, Lesauskaite V, Pavalkis D, Nedzelskiene I, Pranys D, Tamelis A (2009) Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer 9:95PubMedCrossRef
117.
go back to reference Tsai JH, Makonnen S, Feldman M, Sehgal CM, Maity A, Lee WM (2005) Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther 4(12):1395–1400CrossRef Tsai JH, Makonnen S, Feldman M, Sehgal CM, Maity A, Lee WM (2005) Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther 4(12):1395–1400CrossRef
118.
go back to reference Scharpfenecker M, Kruse JJ, Sprong D, Russell NS, Ten Dijke P, Stewart FA (2009) Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 73(2):506–513PubMed Scharpfenecker M, Kruse JJ, Sprong D, Russell NS, Ten Dijke P, Stewart FA (2009) Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 73(2):506–513PubMed
119.
go back to reference Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12(4):465–477PubMedCrossRef Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12(4):465–477PubMedCrossRef
120.
go back to reference Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14(7):2210–2219PubMedCrossRef Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14(7):2210–2219PubMedCrossRef
121.
go back to reference Shibuya K, Komaki R, Shintani T et al (2007) Targeted therapy against VEGFR and EGFR with ZD6474 enhances the therapeutic efficacy of irradiation in an orthotopic model of human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 69(5):1534–1543PubMed Shibuya K, Komaki R, Shintani T et al (2007) Targeted therapy against VEGFR and EGFR with ZD6474 enhances the therapeutic efficacy of irradiation in an orthotopic model of human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 69(5):1534–1543PubMed
122.
go back to reference Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570PubMed Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570PubMed
123.
go back to reference Shannon AM, Williams KJ (2008) Antiangiogenics and radiotherapy. J Pharm Pharmacol 60(8):1029–1036PubMedCrossRef Shannon AM, Williams KJ (2008) Antiangiogenics and radiotherapy. J Pharm Pharmacol 60(8):1029–1036PubMedCrossRef
124.
go back to reference Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed
125.
go back to reference Itasaka S, Komaki R, Herbst RS et al (2007) Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice. Int J Radiat Oncol Biol Phys 67(3):870–878PubMed Itasaka S, Komaki R, Herbst RS et al (2007) Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice. Int J Radiat Oncol Biol Phys 67(3):870–878PubMed
126.
go back to reference Viani GA, Manta GB, Fonseca EC, De Fendi LI, Afonso SL, Stefano EJ (2009) Whole brain radiotherapy with radiosensitizer for brain metastases. J Exp Clin Cancer Res 28:1PubMedCrossRef Viani GA, Manta GB, Fonseca EC, De Fendi LI, Afonso SL, Stefano EJ (2009) Whole brain radiotherapy with radiosensitizer for brain metastases. J Exp Clin Cancer Res 28:1PubMedCrossRef
127.
go back to reference Spiotto MT, Fu YX, Schreiber H (2003) Tumor immunity meets autoimmunity: antigen levels and dendritic cell maturation. Curr Opin Immunol 15(6):725–730PubMedCrossRef Spiotto MT, Fu YX, Schreiber H (2003) Tumor immunity meets autoimmunity: antigen levels and dendritic cell maturation. Curr Opin Immunol 15(6):725–730PubMedCrossRef
128.
go back to reference Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRef Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRef
129.
go back to reference Kim KW, Kim SH, Shin JG et al (2004) Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109(5):685–690PubMedCrossRef Kim KW, Kim SH, Shin JG et al (2004) Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109(5):685–690PubMedCrossRef
130.
go back to reference Ishihara H, Tsuneoka K, Dimchev AB et al (1993) Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res 133(3):321–326PubMedCrossRef Ishihara H, Tsuneoka K, Dimchev AB et al (1993) Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res 133(3):321–326PubMedCrossRef
131.
go back to reference Rieser C, Bock G, Klocker H et al (1997) Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J Exp Med 186(9):1603–1608PubMedCrossRef Rieser C, Bock G, Klocker H et al (1997) Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J Exp Med 186(9):1603–1608PubMedCrossRef
132.
go back to reference Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666PubMed Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666PubMed
133.
go back to reference Senzer N, Mani S, Rosemurgy A et al (2004) TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 22(4):592–601PubMedCrossRef Senzer N, Mani S, Rosemurgy A et al (2004) TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 22(4):592–601PubMedCrossRef
134.
go back to reference Gulley JL, Arlen PM, Bastian N et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(90):3353–3362PubMedCrossRef Gulley JL, Arlen PM, Bastian N et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(90):3353–3362PubMedCrossRef
135.
go back to reference De Schutter H, Nuyts S (2009) Radiosensitizing potential of epigenetic anticancer drugs. Anticancer Agents Med Chem 9(1):99–108PubMed De Schutter H, Nuyts S (2009) Radiosensitizing potential of epigenetic anticancer drugs. Anticancer Agents Med Chem 9(1):99–108PubMed
136.
go back to reference Camphausen K, Tofilon PJ (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25(26):4051–4056PubMedCrossRef Camphausen K, Tofilon PJ (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25(26):4051–4056PubMedCrossRef
137.
go back to reference Harrington KJ, Melcher A, Vassaux G, Pandha HS, Vile RG (2008) Exploiting synergies between radiation and oncolytic viruses. Curr Opin Mol Ther 10(4):362–370PubMed Harrington KJ, Melcher A, Vassaux G, Pandha HS, Vile RG (2008) Exploiting synergies between radiation and oncolytic viruses. Curr Opin Mol Ther 10(4):362–370PubMed
138.
go back to reference Advani SJ, Weichselbaum RR, Chmura SJ (2007) Enhancing radiotherapy with genetically engineered viruses. J Clin Oncol 25(26):4090–4095PubMedCrossRef Advani SJ, Weichselbaum RR, Chmura SJ (2007) Enhancing radiotherapy with genetically engineered viruses. J Clin Oncol 25(26):4090–4095PubMedCrossRef
139.
go back to reference Robson T, Worthington J, McKeown SR, Hirst DG (2005) Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat 4(4):343–361PubMed Robson T, Worthington J, McKeown SR, Hirst DG (2005) Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat 4(4):343–361PubMed
140.
go back to reference Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W (2004) Apoptosis-modulating agents in combination with radiotherapy—current status and outlook. Int J Radiat Oncol Biol Phys 58(2):542–554PubMed Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W (2004) Apoptosis-modulating agents in combination with radiotherapy—current status and outlook. Int J Radiat Oncol Biol Phys 58(2):542–554PubMed
141.
go back to reference Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404PubMedCrossRef Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404PubMedCrossRef
142.
go back to reference Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026PubMedCrossRef Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026PubMedCrossRef
143.
go back to reference Zhao JD, Liu J, Ren ZG et al (2010) Maintenance of sorafenib following combined therapy of three-dimensional conformal radiation therapy/intensity-modulated radiation therapy and transcatheter arterial chemoembolization in patients with locally advanced hepatocellular carcinoma: a phase I/II study. Radiat Oncol 5(1):12PubMedCrossRef Zhao JD, Liu J, Ren ZG et al (2010) Maintenance of sorafenib following combined therapy of three-dimensional conformal radiation therapy/intensity-modulated radiation therapy and transcatheter arterial chemoembolization in patients with locally advanced hepatocellular carcinoma: a phase I/II study. Radiat Oncol 5(1):12PubMedCrossRef
144.
go back to reference Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21PubMedCrossRef Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21PubMedCrossRef
Metadata
Title
Effects of irradiation on tumor cell survival, invasion and angiogenesis
Authors
Odysseas Kargiotis
Aliki Geka
Jasti S. Rao
Athanasios P. Kyritsis
Publication date
01-12-2010
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2010
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0199-4

Other articles of this Issue 3/2010

Journal of Neuro-Oncology 3/2010 Go to the issue