Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2007

01-06-2007 | Laboratory Investigation

Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy

Authors: Anhua Wu, Steve Wiesner, Jing Xiao, Katya Ericson, Wei Chen, Walter A. Hall, Walter C. Low, John R. Ohlfest

Published in: Journal of Neuro-Oncology | Issue 2/2007

Login to get access

Abstract

Mounting evidence suggests that gliomas are comprised of differentiated tumor cells and brain tumor stem cells (BTSCs). BTSCs account for a fraction of total tumor cells, yet are apparently the sole cells capable of tumor initiation and tumor renewal. BTSCs have been identified as the CD133-positive fraction of human glioma, whereas their CD133-negative daughter cells have limited proliferative ability and are not tumorogenic. It is well established that the bulk tumor mass escapes immune surveillance by multiple mechanisms, yet little is known about the immunogenicity of the CD133-positive fraction of the tumor mass. We investigated the immunogenicity of CD133-positive cells in two human astrocytoma and two glioblastoma multiforme samples. Flow cytometry analyses revealed that the majority of CD133-positive cells do not express detectable MHC I or natural killer (NK) cell activating ligands, which may render them resistant to adaptive and innate immune surveillance. Incubating CD133-positive cells in interferon gamma (INF-γ) significantly increased the percentage of CD133-positive cells that expressed MHC I and NK cell ligands. Furthermore, pretreatment of CD133-positive cells with INF-γ rendered them sensitive to NK cell-mediated lysis in vitro. There were no consistent differences in immunogenicity between the CD133-positive and CD133-negative cells in these experiments. We conclude that CD133-posistive and CD133-negative glioma cells may be similarly resistant to immune surveillance, but that INF-γ may partially restore their immunogenicity and potentiate their lysis by NK cells.
Literature
1.
go back to reference Weller M, Thomas DGT (2003) Primary tumors of the central and peripheral nervous system. In: Brandt T, Caplan LR, Dichgans J, Diener HC, Kennard C (eds) Course and treatment of neurological disorders. Academic Press, San Deigo, CA, pp827–863 Weller M, Thomas DGT (2003) Primary tumors of the central and peripheral nervous system. In: Brandt T, Caplan LR, Dichgans J, Diener HC, Kennard C (eds) Course and treatment of neurological disorders. Academic Press, San Deigo, CA, pp827–863
2.
go back to reference Wiesner SM, Freese A, Ohlfest JR (2005) Emerging concepts in glioma biology: implications for clinical protocols and rational treatment strategies. Neurosurg Focus 19:E3:1–6CrossRef Wiesner SM, Freese A, Ohlfest JR (2005) Emerging concepts in glioma biology: implications for clinical protocols and rational treatment strategies. Neurosurg Focus 19:E3:1–6CrossRef
3.
go back to reference Fecci PE, Mitchell DA, Archer GE, Morse MA, Lyerly HK, Bigner DD, Sampson JH (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neurooncol 64:161–176PubMedCrossRef Fecci PE, Mitchell DA, Archer GE, Morse MA, Lyerly HK, Bigner DD, Sampson JH (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neurooncol 64:161–176PubMedCrossRef
4.
5.
go back to reference King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG (2005) Gene therapy and targeted toxins for glioma. Curr Gene Ther 5:535–557PubMedCrossRef King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG (2005) Gene therapy and targeted toxins for glioma. Curr Gene Ther 5:535–557PubMedCrossRef
6.
go back to reference Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525PubMedCrossRef Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525PubMedCrossRef
7.
go back to reference Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167PubMedCrossRef Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167PubMedCrossRef
8.
go back to reference Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRef Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRef
9.
go back to reference Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A, Itskovitz-Eldor J, Kventsel I, Rosenthal E, Amariglio N, Rechavi G (2005) CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23:1142–1153PubMedCrossRef Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A, Itskovitz-Eldor J, Kventsel I, Rosenthal E, Amariglio N, Rechavi G (2005) CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23:1142–1153PubMedCrossRef
10.
go back to reference Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRef Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRef
11.
go back to reference Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRef Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRef
12.
go back to reference Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef
14.
go back to reference Yin AH, Miraglia S, Zanjani ED, meida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMed Yin AH, Miraglia S, Zanjani ED, meida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMed
15.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed
16.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRef
17.
go back to reference Li MC, Deng YW, Wu J, Chen FH, Liu JF, Fang JS (2006) Isolation and characterization of brain tumor stem cells in human medulloblastoma. Ai Zheng 25:241–246PubMed Li MC, Deng YW, Wu J, Chen FH, Liu JF, Fang JS (2006) Isolation and characterization of brain tumor stem cells in human medulloblastoma. Ai Zheng 25:241–246PubMed
19.
go back to reference Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRef Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRef
20.
go back to reference Van KL (2002) Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens 60:1–9CrossRef Van KL (2002) Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens 60:1–9CrossRef
21.
go back to reference Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603PubMedCrossRef Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603PubMedCrossRef
22.
go back to reference Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2005) Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100:7–13PubMedCrossRef Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2005) Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100:7–13PubMedCrossRef
23.
go back to reference Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, gli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510PubMedCrossRef Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, gli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510PubMedCrossRef
24.
go back to reference Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, Moretta A (2000) Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol 107:220–225PubMedCrossRef Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, Moretta A (2000) Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol 107:220–225PubMedCrossRef
25.
go back to reference Yokoyama WM, Kim S (2006) How do natural killer cells find self to achieve tolerance? Immunity 24:249–257PubMedCrossRef Yokoyama WM, Kim S (2006) How do natural killer cells find self to achieve tolerance? Immunity 24:249–257PubMedCrossRef
26.
go back to reference Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L, Moretta A (2002) Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99:4526–4531PubMedCrossRef Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L, Moretta A (2002) Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99:4526–4531PubMedCrossRef
27.
go back to reference Piriou L, Chilmonczyk S, Genetet N, Albina E (2000) Design of a flow cytometric assay for the determination of natural killer and cytotoxic T-lymphocyte activity in human and in different animal species. Cytometry 41:289–297PubMedCrossRef Piriou L, Chilmonczyk S, Genetet N, Albina E (2000) Design of a flow cytometric assay for the determination of natural killer and cytotoxic T-lymphocyte activity in human and in different animal species. Cytometry 41:289–297PubMedCrossRef
28.
go back to reference Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021 Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021
29.
go back to reference Satoh E, Mabuchi T, Satoh H, Asahara T, Nukui H, Naganuma H (2006) Reduced expression of the transporter associated with antigen processing 1 molecule in malignant glioma cells, and its restoration by interferon-gamma and -beta. J Neurosurg 104:264–271PubMed Satoh E, Mabuchi T, Satoh H, Asahara T, Nukui H, Naganuma H (2006) Reduced expression of the transporter associated with antigen processing 1 molecule in malignant glioma cells, and its restoration by interferon-gamma and -beta. J Neurosurg 104:264–271PubMed
30.
go back to reference Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319PubMedCrossRef Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319PubMedCrossRef
31.
go back to reference Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, Turley H, Dobbs N, Gatter K, Talbot DC, Harris AL, Ganesan TS (2003) Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9:84–92PubMed Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, Turley H, Dobbs N, Gatter K, Talbot DC, Harris AL, Ganesan TS (2003) Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9:84–92PubMed
32.
go back to reference Gastl G, Ebert T, Finstad CL, Sheinfeld J, Gomahr A, Aulitzky W, Bander NH (1996) Major histocompatibility complex class I and class II expression in renal cell carcinoma and modulation by interferon gamma. J Urol 155:361–367PubMedCrossRef Gastl G, Ebert T, Finstad CL, Sheinfeld J, Gomahr A, Aulitzky W, Bander NH (1996) Major histocompatibility complex class I and class II expression in renal cell carcinoma and modulation by interferon gamma. J Urol 155:361–367PubMedCrossRef
33.
go back to reference Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRef Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRef
34.
go back to reference Campbell KS, Colonna M (2001) Human natural killer cell receptors and signal transduction. Int Rev Immunol 20:333–370PubMed Campbell KS, Colonna M (2001) Human natural killer cell receptors and signal transduction. Int Rev Immunol 20:333–370PubMed
35.
go back to reference Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10PubMedCrossRef Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10PubMedCrossRef
36.
go back to reference Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186PubMedCrossRef Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186PubMedCrossRef
37.
go back to reference Binstadt BA, Brumbaugh KM, Leibson PJ (1997) Signal transduction by human NK cell MHC-recognizing receptors. Immunol Rev 155:197–203PubMedCrossRef Binstadt BA, Brumbaugh KM, Leibson PJ (1997) Signal transduction by human NK cell MHC-recognizing receptors. Immunol Rev 155:197–203PubMedCrossRef
38.
go back to reference Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C, Pende D, Steinle A, Ferrone S, Pistoia V (2004) Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6:558–568PubMedCrossRef Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C, Pende D, Steinle A, Ferrone S, Pistoia V (2004) Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6:558–568PubMedCrossRef
39.
go back to reference Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411PubMedCrossRef Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411PubMedCrossRef
40.
go back to reference Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM, Mailliard RB (2005) Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 42:535–539PubMedCrossRef Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM, Mailliard RB (2005) Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 42:535–539PubMedCrossRef
41.
42.
go back to reference Saleh M, Jonas NK, Wiegmans A, Stylli SS (2000) The treatment of established intracranial tumors by in situ retroviral IFN-gamma transfer. Gene Ther 7:1715–1724PubMedCrossRef Saleh M, Jonas NK, Wiegmans A, Stylli SS (2000) The treatment of established intracranial tumors by in situ retroviral IFN-gamma transfer. Gene Ther 7:1715–1724PubMedCrossRef
43.
go back to reference Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL, Yu JS (2002) Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 9:925–934PubMedCrossRef Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL, Yu JS (2002) Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 9:925–934PubMedCrossRef
44.
go back to reference Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51:1–9PubMedCrossRef Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51:1–9PubMedCrossRef
Metadata
Title
Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy
Authors
Anhua Wu
Steve Wiesner
Jing Xiao
Katya Ericson
Wei Chen
Walter A. Hall
Walter C. Low
John R. Ohlfest
Publication date
01-06-2007
Published in
Journal of Neuro-Oncology / Issue 2/2007
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-006-9265-3

Other articles of this Issue 2/2007

Journal of Neuro-Oncology 2/2007 Go to the issue