Skip to main content
Top
Published in: Metabolic Brain Disease 3/2015

Open Access 01-06-2015 | Review Article

Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings

Authors: Ibrahim Jalloh, Keri L. H. Carpenter, Adel Helmy, T. Adrian Carpenter, David K. Menon, Peter J. Hutchinson

Published in: Metabolic Brain Disease | Issue 3/2015

Login to get access

Abstract

The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.
Literature
go back to reference Andersen BJ, Marmarou A (1992) Post-traumatic selective stimulation of glycolysis. Brain Res 585:184–189CrossRefPubMed Andersen BJ, Marmarou A (1992) Post-traumatic selective stimulation of glycolysis. Brain Res 585:184–189CrossRefPubMed
go back to reference Ashwal S, Holshouser BA, Shu SK et al (2000) Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 23:114–125CrossRefPubMed Ashwal S, Holshouser BA, Shu SK et al (2000) Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 23:114–125CrossRefPubMed
go back to reference Bergsneider M, Hovda DA, Lee SM et al (2000) Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 17:389–401. doi:10.1089/neu.2000.17.389 CrossRefPubMed Bergsneider M, Hovda DA, Lee SM et al (2000) Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 17:389–401. doi:10.​1089/​neu.​2000.​17.​389 CrossRefPubMed
go back to reference Cadoux-Hudson TA, Wade D, Taylor DJ et al (1990) Persistent metabolic sequelae of severe head injury in humans in vivo. Acta Neurochir (Wien) 104:1–7CrossRef Cadoux-Hudson TA, Wade D, Taylor DJ et al (1990) Persistent metabolic sequelae of severe head injury in humans in vivo. Acta Neurochir (Wien) 104:1–7CrossRef
go back to reference Chen T, Qian YZ, Di X et al (2000) Evidence for lactate uptake after rat fluid percussion brain injury. Acta Neurochir Suppl 76:359–364PubMed Chen T, Qian YZ, Di X et al (2000) Evidence for lactate uptake after rat fluid percussion brain injury. Acta Neurochir Suppl 76:359–364PubMed
go back to reference Chesnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma Inj Infect Crit Care 34:216–222CrossRef Chesnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma Inj Infect Crit Care 34:216–222CrossRef
go back to reference Diaz-Parejo P, Ståhl N, Xu W, et al. (2003) Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 29:544–550. doi:10.1007/s00134-003-1669-3 Diaz-Parejo P, Ståhl N, Xu W, et al. (2003) Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 29:544–550. doi:10.​1007/​s00134-003-1669-3
go back to reference Eleff S, Kennaway NG, Buist NR et al (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci U S A 81:3529–3533CrossRefPubMedCentralPubMed Eleff S, Kennaway NG, Buist NR et al (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci U S A 81:3529–3533CrossRefPubMedCentralPubMed
go back to reference Ferris EB, Engel GL (1946) The validity of internal jugular venous blood in studies of cerebral metabolism and blood flow in man. Am J Physiol 147:517–521PubMed Ferris EB, Engel GL (1946) The validity of internal jugular venous blood in studies of cerebral metabolism and blood flow in man. Am J Physiol 147:517–521PubMed
go back to reference Gallagher CN, Carpenter KLH, Grice P et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849. doi:10.1093/brain/awp202 CrossRefPubMed Gallagher CN, Carpenter KLH, Grice P et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849. doi:10.​1093/​brain/​awp202 CrossRefPubMed
go back to reference Glenn TC, Kelly DF, Boscardin WJ, et al (2003) Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 1239–1250. doi:10.1097/01.WCB.0000089833.23606.7F Glenn TC, Kelly DF, Boscardin WJ, et al (2003) Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 1239–1250. doi:10.​1097/​01.​WCB.​0000089833.​23606.​7F
go back to reference Hamilton G, Allsop JM, Patel N, et al. (2006) Variations due to analysis technique in intracellular pH measurements in simulated and in vivo 31P MR spectra of the human brain. J Magn Reson Imaging 23:459–464. doi:10.1002/jmri.20524 Hamilton G, Allsop JM, Patel N, et al. (2006) Variations due to analysis technique in intracellular pH measurements in simulated and in vivo 31P MR spectra of the human brain. J Magn Reson Imaging 23:459–464. doi:10.​1002/​jmri.​20524
go back to reference Hattori N, Huang S-C, Wu H-M et al (2003) Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injury. J Nucl Med 44:1709–1716PubMed Hattori N, Huang S-C, Wu H-M et al (2003) Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injury. J Nucl Med 44:1709–1716PubMed
go back to reference Heath DL, Vink R (1995) Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome. J Neurotrauma 12:1027–1034CrossRefPubMed Heath DL, Vink R (1995) Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome. J Neurotrauma 12:1027–1034CrossRefPubMed
go back to reference Herrero-Mendez A, Almeida A, Fernández E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat Cell Biol 11:747–752. doi:10.1038/ncb1881 CrossRefPubMed Herrero-Mendez A, Almeida A, Fernández E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat Cell Biol 11:747–752. doi:10.​1038/​ncb1881 CrossRefPubMed
go back to reference Huang SC, Phelps ME, Hoffman EJ et al (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82PubMed Huang SC, Phelps ME, Hoffman EJ et al (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82PubMed
go back to reference Hutchinson PJ, Gupta AK, Fryer TF et al (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745. doi:10.1097/00004647-200206000-00012 CrossRefPubMed Hutchinson PJ, Gupta AK, Fryer TF et al (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745. doi:10.​1097/​00004647-200206000-00012 CrossRefPubMed
go back to reference Kato T, Nakayama N, Yasokawa Y et al (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24:919–926. doi:10.1089/neu.2006.0203 CrossRefPubMed Kato T, Nakayama N, Yasokawa Y et al (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24:919–926. doi:10.​1089/​neu.​2006.​0203 CrossRefPubMed
go back to reference Kawamata T, Katayama Y, Hovda DA et al (1992) Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb Blood Flow Metab 12:12–24. doi:10.1038/jcbfm.1992.3 CrossRefPubMed Kawamata T, Katayama Y, Hovda DA et al (1992) Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb Blood Flow Metab 12:12–24. doi:10.​1038/​jcbfm.​1992.​3 CrossRefPubMed
go back to reference Lammertsma AA, Brooks DJ, Frackowiak RSJ et al (1987) Measurement of glucose utilisation with [18F]2-Fluoro-2-Deoxy-D-Glucose: a comparison of different. Anal Methods 7:161–172. doi:10.1038/jcbfm.1987.39 Lammertsma AA, Brooks DJ, Frackowiak RSJ et al (1987) Measurement of glucose utilisation with [18F]2-Fluoro-2-Deoxy-D-Glucose: a comparison of different. Anal Methods 7:161–172. doi:10.​1038/​jcbfm.​1987.​39
go back to reference Leegsma-Vogt G, Venema K, Postema F, Korf J (2001) Monitoring arterio-venous differences of glucose and lactate in the anesthetized rat with or without brain damage with ultrafiltration and biosensor technology. J Neurosci Res 66:795–802. doi:10.1002/jnr.10046 CrossRefPubMed Leegsma-Vogt G, Venema K, Postema F, Korf J (2001) Monitoring arterio-venous differences of glucose and lactate in the anesthetized rat with or without brain damage with ultrafiltration and biosensor technology. J Neurosci Res 66:795–802. doi:10.​1002/​jnr.​10046 CrossRefPubMed
go back to reference Marino S, Zei E, Battaglini M et al (2007) Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. JNNP 78:501–507. doi:10.1136/jnnp.2006.099796 Marino S, Zei E, Battaglini M et al (2007) Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. JNNP 78:501–507. doi:10.​1136/​jnnp.​2006.​099796
go back to reference Marklund N, Clausen F, Lewander T, Hillered L (2001) Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping method. J Neurotrauma 18:1217–1227. doi:10.1089/089771501317095250 CrossRefPubMed Marklund N, Clausen F, Lewander T, Hillered L (2001) Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping method. J Neurotrauma 18:1217–1227. doi:10.​1089/​0897715013170952​50 CrossRefPubMed
go back to reference Mason GF, Gruetter R, Rothman DL et al (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, |[alpha]|-ketoglutarate|[sol]|glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25. doi:10.1038/jcbfm.1995.2 CrossRefPubMed Mason GF, Gruetter R, Rothman DL et al (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, |[alpha]|-ketoglutarate|[sol]|glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25. doi:10.​1038/​jcbfm.​1995.​2 CrossRefPubMed
go back to reference Meierhans R, Brandi G, Fasshauer M et al (2012) Arterial lactate above 2 mM is associated with increased brain lactate and decreased brain glucose in patients with severe traumatic brain injury. Minerva Anestesiol 78:185–193PubMed Meierhans R, Brandi G, Fasshauer M et al (2012) Arterial lactate above 2 mM is associated with increased brain lactate and decreased brain glucose in patients with severe traumatic brain injury. Minerva Anestesiol 78:185–193PubMed
go back to reference Osteen CL, Moore AH, Prins ML, Hovda DA (2004) Age-dependency of 45Calcium accumulation following lateral fluid percussion: acute and delayed patterns. http://dxdoiorg/10.1089/08977150150502587 Osteen CL, Moore AH, Prins ML, Hovda DA (2004) Age-dependency of 45Calcium accumulation following lateral fluid percussion: acute and delayed patterns. http://​dxdoiorg/​10.​1089/​0897715015050258​7
go back to reference Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629CrossRefPubMedCentralPubMed Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629CrossRefPubMedCentralPubMed
go back to reference Prins ML, Giza CC (2006) Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci 28:447–456. doi:10.1159/000094170 CrossRefPubMed Prins ML, Giza CC (2006) Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci 28:447–456. doi:10.​1159/​000094170 CrossRefPubMed
go back to reference Rostami E, Bellander B-M (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5:596–604CrossRefPubMedCentralPubMed Rostami E, Bellander B-M (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5:596–604CrossRefPubMedCentralPubMed
go back to reference Stocchetti N, Furlan A, Volta F (1996) Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma Inj Infect Crit Care 40:764–767CrossRef Stocchetti N, Furlan A, Volta F (1996) Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma Inj Infect Crit Care 40:764–767CrossRef
go back to reference Vespa PM, McArthur D, O'Phelan K, et al (2003) Persistently Low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 865–877. doi:10.1097/01.WCB.0000076701.45782.EF Vespa PM, McArthur D, O'Phelan K, et al (2003) Persistently Low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 865–877. doi:10.​1097/​01.​WCB.​0000076701.​45782.​EF
go back to reference Vespa P, McArthur D, Stein N, et al. (2012) Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 40:1923–1929. doi:10.1097/CCM.0b013e31824e0fcc Vespa P, McArthur D, Stein N, et al. (2012) Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 40:1923–1929. doi:10.​1097/​CCM.​0b013e31824e0fcc​
go back to reference Vink R, McIntosh TK, Weiner MW, Faden AI (1987) Effects of traumatic brain injury on cerebral high-energy phosphates and pH: A 31P magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 7:563–571. doi:10.1038/jcbfm.1987.106 CrossRefPubMed Vink R, McIntosh TK, Weiner MW, Faden AI (1987) Effects of traumatic brain injury on cerebral high-energy phosphates and pH: A 31P magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 7:563–571. doi:10.​1038/​jcbfm.​1987.​106 CrossRefPubMed
go back to reference Yokobori S, Watanabe A, Matsumoto G et al (2011) Time course of recovery from cerebral vulnerability after severe traumatic brain injury: a microdialysis study. J Trauma Inj Infect Crit Care 71:1235–1240. doi:10.1097/TA.0b013e3182140dd7 CrossRef Yokobori S, Watanabe A, Matsumoto G et al (2011) Time course of recovery from cerebral vulnerability after severe traumatic brain injury: a microdialysis study. J Trauma Inj Infect Crit Care 71:1235–1240. doi:10.​1097/​TA.​0b013e3182140dd7​ CrossRef
go back to reference Zauner A, Doppenberg EM, Woodward JJ et al (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41:1082–1091, discussion 1091–3CrossRefPubMed Zauner A, Doppenberg EM, Woodward JJ et al (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41:1082–1091, discussion 1091–3CrossRefPubMed
Metadata
Title
Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings
Authors
Ibrahim Jalloh
Keri L. H. Carpenter
Adel Helmy
T. Adrian Carpenter
David K. Menon
Peter J. Hutchinson
Publication date
01-06-2015
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 3/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9628-y

Other articles of this Issue 3/2015

Metabolic Brain Disease 3/2015 Go to the issue