Skip to main content
Top
Published in: Metabolic Brain Disease 4/2014

01-12-2014 | Research Article

Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

Authors: Hsueh-Meei Huang, Huan-Lian Chen, Gary E. Gibson

Published in: Metabolic Brain Disease | Issue 4/2014

Login to get access

Abstract

Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60 %) or import (−40 %). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25 %) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53 %). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca2+ modifies the depletion and refilling mechanism of ER Ca2+ stores.
Literature
go back to reference Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009) Presenilins Are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816PubMedCentralPubMedCrossRef Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009) Presenilins Are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816PubMedCentralPubMedCrossRef
go back to reference Barbeau A, Butterworth RF, Ngo T, Breton G, Melançon S, Shapcott D, Geoffroy G, Lemieux B (1976) Pyruvate metabolism in Friedreich’s ataxia. The Can J Neurol Sci J Can Sci Neurol 3:379–388 Barbeau A, Butterworth RF, Ngo T, Breton G, Melançon S, Shapcott D, Geoffroy G, Lemieux B (1976) Pyruvate metabolism in Friedreich’s ataxia. The Can J Neurol Sci J Can Sci Neurol 3:379–388
go back to reference Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061PubMedCrossRef Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061PubMedCrossRef
go back to reference Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW Jr (2001) Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276:15945–15952PubMedCrossRef Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW Jr (2001) Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276:15945–15952PubMedCrossRef
go back to reference Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200PubMedCrossRef Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200PubMedCrossRef
go back to reference Gibson GE, Chen HL, Xu H, Qiu L, Xu Z, Denton TT, Shi, Q (2012) Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation. NeurobiolAging 33: 1121.e1113-1121.e1124 Gibson GE, Chen HL, Xu H, Qiu L, Xu Z, Denton TT, Shi, Q (2012) Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation. NeurobiolAging 33: 1121.e1113-1121.e1124
go back to reference Gibson GE, Hirsch JA, Cirio RT, Jordan BD, Fonzetti P, Elder J (2013) Abnormal thiamine-dependent processes in Alzheimer’s disease. Lessons from diabetes. Mol Cell Neurosci 55:17–25PubMedCentralPubMedCrossRef Gibson GE, Hirsch JA, Cirio RT, Jordan BD, Fonzetti P, Elder J (2013) Abnormal thiamine-dependent processes in Alzheimer’s disease. Lessons from diabetes. Mol Cell Neurosci 55:17–25PubMedCentralPubMedCrossRef
go back to reference Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424PubMedCrossRef Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424PubMedCrossRef
go back to reference Hidalgo C, Bull R, Marengo JJ, Perez CF, Donoso P (2000) SH oxidation stimulates calcium release channels (ryanodine receptors) from excitable cells. Biol Res 33:113–124PubMed Hidalgo C, Bull R, Marengo JJ, Perez CF, Donoso P (2000) SH oxidation stimulates calcium release channels (ryanodine receptors) from excitable cells. Biol Res 33:113–124PubMed
go back to reference Huang HM, Chen HL, Xu H, Gibson GE (2005) Modification of endoplasmic reticulum Ca2+ stores by select oxidants produces changes reminiscent of those in cells from patients with Alzheimer disease. Free Radic Biol Med 39:979–989PubMedCrossRef Huang HM, Chen HL, Xu H, Gibson GE (2005) Modification of endoplasmic reticulum Ca2+ stores by select oxidants produces changes reminiscent of those in cells from patients with Alzheimer disease. Free Radic Biol Med 39:979–989PubMedCrossRef
go back to reference Huang HM, Zhang H, Ou HC, Chen HL, Gibson GE (2004) Alpha-keto-β-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplamic reticulumn Ca (2+) stores. Free Radic Biol Med 37:1779–1789PubMedCrossRef Huang HM, Zhang H, Ou HC, Chen HL, Gibson GE (2004) Alpha-keto-β-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplamic reticulumn Ca (2+) stores. Free Radic Biol Med 37:1779–1789PubMedCrossRef
go back to reference Ito E, Oka K, Etcheberrigaray R, Nelson TJ, McPhie DL, Tofel-Grehl B, Gibson GE, Alkon DL (1994) Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A 91:534–538PubMedCentralPubMedCrossRef Ito E, Oka K, Etcheberrigaray R, Nelson TJ, McPhie DL, Tofel-Grehl B, Gibson GE, Alkon DL (1994) Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A 91:534–538PubMedCentralPubMedCrossRef
go back to reference Karuppagounder SS, Xu H, Shi Q, Chen LH, Pedrini S, Pechman D, Baker H, Beal MF, Gandy SE, Gibson GE (2009) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol Aging 30:1587–1600PubMedCentralPubMedCrossRef Karuppagounder SS, Xu H, Shi Q, Chen LH, Pedrini S, Pechman D, Baker H, Beal MF, Gandy SE, Gibson GE (2009) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol Aging 30:1587–1600PubMedCentralPubMedCrossRef
go back to reference Kojima I, Ogata E (1989) Na-Ca exchanger as a calcium influx pathway in adrenal glomerulosa cells. Biochem Biophys Res Commun 158:1005–1012PubMedCrossRef Kojima I, Ogata E (1989) Na-Ca exchanger as a calcium influx pathway in adrenal glomerulosa cells. Biochem Biophys Res Commun 158:1005–1012PubMedCrossRef
go back to reference Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 149(4):793–798PubMedCentralPubMedCrossRef Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 149(4):793–798PubMedCentralPubMedCrossRef
go back to reference Lin X, Varnai P, Csordas G, Balla A, Nagai T, Miyawaki A, Balla T, Hajnoczky G (2005) Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J Biol Chem 280:12820–12832PubMedCrossRef Lin X, Varnai P, Csordas G, Balla A, Nagai T, Miyawaki A, Balla T, Hajnoczky G (2005) Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J Biol Chem 280:12820–12832PubMedCrossRef
go back to reference Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779PubMedCrossRef Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779PubMedCrossRef
go back to reference Malli R, Frieden M, Trenker M, Graier WF (2005) The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem 280:12114–12122PubMedCrossRef Malli R, Frieden M, Trenker M, Graier WF (2005) The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J Biol Chem 280:12114–12122PubMedCrossRef
go back to reference Nelson O, Supnet C, Liu H, Bezprozvanny I (2010) Familial Alzheimer’s disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis 21:781–793PubMed Nelson O, Supnet C, Liu H, Bezprozvanny I (2010) Familial Alzheimer’s disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis 21:781–793PubMed
go back to reference Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, Sun X, Zhao L, Yu M, Xu Z, Dong W, Qin Y, Fei G, Zhong C, Xu T-L (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and β-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133:1342–1351PubMedCrossRef Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, Sun X, Zhao L, Yu M, Xu Z, Dong W, Qin Y, Fei G, Zhong C, Xu T-L (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and β-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133:1342–1351PubMedCrossRef
go back to reference Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636PubMed Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636PubMed
go back to reference Putney JW Jr, Ribeiro CM (2000) Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 57:1272–1286PubMedCrossRef Putney JW Jr, Ribeiro CM (2000) Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 57:1272–1286PubMedCrossRef
go back to reference Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747PubMedCrossRef Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747PubMedCrossRef
go back to reference Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199PubMedCrossRef Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199PubMedCrossRef
go back to reference Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766PubMedCrossRef Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766PubMedCrossRef
go back to reference Seguchi H, Ritter M, Shizukuishi M, Ishida H, Chokoh G, Nakazawa H, Spitzer KW, Barry WH (2005) Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. Cell Calcium 38:1–9PubMedCrossRef Seguchi H, Ritter M, Shizukuishi M, Ishida H, Chokoh G, Nakazawa H, Spitzer KW, Barry WH (2005) Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. Cell Calcium 38:1–9PubMedCrossRef
go back to reference Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272:22654–22661PubMedCrossRef Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272:22654–22661PubMedCrossRef
go back to reference Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged alzheimer's disease mice. J Neurol Sci 26:5180–5189 Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged alzheimer's disease mice. J Neurol Sci 26:5180–5189
go back to reference Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237PubMedCrossRef Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237PubMedCrossRef
go back to reference Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572PubMedCrossRef Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572PubMedCrossRef
Metadata
Title
Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry
Authors
Hsueh-Meei Huang
Huan-Lian Chen
Gary E. Gibson
Publication date
01-12-2014
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 4/2014
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9541-4

Other articles of this Issue 4/2014

Metabolic Brain Disease 4/2014 Go to the issue