Skip to main content
Top
Published in: Metabolic Brain Disease 3/2010

01-09-2010 | Original Paper

Therapeutic effect of a novel anti-parkinsonian agent zonisamide against MPTP (1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine) neurotoxicity in mice

Authors: Hironori Yokoyama, Ryohei Yano, Hayato Kuroiwa, Tatsuya Tsukada, Hiroto Uchida, Hiroyuki Kato, Jiro Kasahara, Tsutomu Araki

Published in: Metabolic Brain Disease | Issue 3/2010

Login to get access

Abstract

We investigated the therapeutic effect of zonisamide against 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice, using Western blot analysis, immunohistochemistry and behavioral test. Our Western blot analysis and immunohistochemical study showed that the post-treatment with zonisamide prevented significantly dopaminergic cell damage, the depletion of tyrosine-hydroxylase (TH) protein levels and the proliferation of microglia in the striatum and/or substantia nigra 8 days after MPTP treatment. Furthermore, our behavioral study showed that the post-treatment with zonisamide attenuated significantly the motor deficits 7 days after MPTP treatment. These results show that zonisamide has the therapeutic effect in the MPTP model of Parkinson’s disease (PD) in mice. Our study also demonstrates the neuroprotective effect of zonisamide against dopaminergic cell damage after MPTP treatment in mice. Thus our present findings suggest that therapeutic strategies targeted to the activation of TH protein and/or the inhibition of microglial activation with zonisamide may offer a great potential for restoring the functional capacity of the surviving dopaminergic neurons in individuals affected with PD.
Literature
go back to reference Ahlskog JE, Munenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458CrossRefPubMed Ahlskog JE, Munenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458CrossRefPubMed
go back to reference Aoki E, Yano R, Yokoyama H, Kato H, Araki T (2009) Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl- 1, 2, 3, 6- tetrahyropyridine) -induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64CrossRefPubMed Aoki E, Yano R, Yokoyama H, Kato H, Araki T (2009) Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl- 1, 2, 3, 6- tetrahyropyridine) -induced apoptosis in nigral neurons of mice. Exp Mol Pathol 86:57–64CrossRefPubMed
go back to reference Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K, Ogawa N, Murata M (2008) Preventing effects of a novel anti-parkinsonian agent zonisamide on dopamine quinone formation. Neurosci Res 60:106–113CrossRefPubMed Asanuma M, Miyazaki I, Diaz-Corrales FJ, Miyoshi K, Ogawa N, Murata M (2008) Preventing effects of a novel anti-parkinsonian agent zonisamide on dopamine quinone formation. Neurosci Res 60:106–113CrossRefPubMed
go back to reference Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:120–131CrossRefPubMed Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:120–131CrossRefPubMed
go back to reference Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98CrossRefPubMed Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98CrossRefPubMed
go back to reference Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494CrossRefPubMed Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494CrossRefPubMed
go back to reference Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143CrossRefPubMed Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143CrossRefPubMed
go back to reference Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916CrossRefPubMed Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916CrossRefPubMed
go back to reference Gallo F, Morale MC, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A, Marchetti B (2000) Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. Synapse 36:233–253CrossRefPubMed Gallo F, Morale MC, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A, Marchetti B (2000) Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. Synapse 36:233–253CrossRefPubMed
go back to reference Gluck MR, Youngster SK, Ramsay RR, Singer TP, Nicklas WJ (1994) Studies on the characterization of the inhibitory mechanism of 4′-alkylated 1-methyl- 4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63:655–661CrossRefPubMed Gluck MR, Youngster SK, Ramsay RR, Singer TP, Nicklas WJ (1994) Studies on the characterization of the inhibitory mechanism of 4′-alkylated 1-methyl- 4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63:655–661CrossRefPubMed
go back to reference Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4- phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055CrossRefPubMed Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4- phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055CrossRefPubMed
go back to reference Hayakawa T, Higuchi Y, Nigami H, Hattori H (1994) Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsive effect. Eur J Pharmacol 257:131–136CrossRefPubMed Hayakawa T, Higuchi Y, Nigami H, Hattori H (1994) Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsive effect. Eur J Pharmacol 257:131–136CrossRefPubMed
go back to reference Heikkila RE, Manzino L, Cabbat ES, Duvosion RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydroxypyridine by monoamine oxidase inhibitors. Nature 311:467–469CrossRefPubMed Heikkila RE, Manzino L, Cabbat ES, Duvosion RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydroxypyridine by monoamine oxidase inhibitors. Nature 311:467–469CrossRefPubMed
go back to reference Ito T, Yamaguchi T, Miyazaki H, Sekine Y, Shimizu M, Ishida S, Yagi K, Kakegawa N, Seino M, Wada T (1982) Pharmacokinetic studies of AD-810, a new antiepileptic compound. Phase I trials. Arzneim-Forsch 32:1581–1586 Ito T, Yamaguchi T, Miyazaki H, Sekine Y, Shimizu M, Ishida S, Yagi K, Kakegawa N, Seino M, Wada T (1982) Pharmacokinetic studies of AD-810, a new antiepileptic compound. Phase I trials. Arzneim-Forsch 32:1581–1586
go back to reference Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM (2004) Tyrosine hydroxylase and dopamine transporter expression following 1-methyl- 4-phenyl- 1, 2, 3, 6- tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 76:539–550CrossRefPubMed Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM (2004) Tyrosine hydroxylase and dopamine transporter expression following 1-methyl- 4-phenyl- 1, 2, 3, 6- tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 76:539–550CrossRefPubMed
go back to reference Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61CrossRefPubMed Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61CrossRefPubMed
go back to reference McElroy SL, Suppes T, Keck PE Jr, Black D, Frye MA, Altshuler LL, Nolen WA, Kupka RW, Leverich GS, Walden J, Grunze H, Post RM (2005) Open-label adjunctive zonisamide in the treatment of bipolar disorders: a prospective trial. J Clin Psychiatry 66:617–624CrossRefPubMed McElroy SL, Suppes T, Keck PE Jr, Black D, Frye MA, Altshuler LL, Nolen WA, Kupka RW, Leverich GS, Walden J, Grunze H, Post RM (2005) Open-label adjunctive zonisamide in the treatment of bipolar disorders: a prospective trial. J Clin Psychiatry 66:617–624CrossRefPubMed
go back to reference McGeer PL, Itagaki S, Boyes BE, McGeer EG (1998) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291 McGeer PL, Itagaki S, Boyes BE, McGeer EG (1998) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291
go back to reference Morale MC, Serra PA, L’episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Estrogen MB (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869–878CrossRefPubMed Morale MC, Serra PA, L’episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Estrogen MB (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869–878CrossRefPubMed
go back to reference Murata M (2004) Novel therapeutic effects of the anti-convulsant, zonisamide, on Parkinson’s disease. Curr Pharm Des 10:687–693CrossRefPubMed Murata M (2004) Novel therapeutic effects of the anti-convulsant, zonisamide, on Parkinson’s disease. Curr Pharm Des 10:687–693CrossRefPubMed
go back to reference Murata M, Hasegawa K, Kanazawa I (2007) Zonisamide improves motor function in Parkinson’s disease: a randomized, double-blind study. Neurology 68:45–50CrossRefPubMed Murata M, Hasegawa K, Kanazawa I (2007) Zonisamide improves motor function in Parkinson’s disease: a randomized, double-blind study. Neurology 68:45–50CrossRefPubMed
go back to reference Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM (2000) High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 20:1040–1044CrossRefPubMed Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM (2000) High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 20:1040–1044CrossRefPubMed
go back to reference Ogawa N, Asanuma M, Miyazaki I, Diaz-Corrales F, Miyoshi K (2005) L-DOPA treatment from the viewpoint of neuroprotection: possible mechanism of specific and progressive dopaminergic neuronal death in Parkinson’s disease. J Neurol 252(suppl 4):iv23–iv31CrossRefPubMed Ogawa N, Asanuma M, Miyazaki I, Diaz-Corrales F, Miyoshi K (2005) L-DOPA treatment from the viewpoint of neuroprotection: possible mechanism of specific and progressive dopaminergic neuronal death in Parkinson’s disease. J Neurol 252(suppl 4):iv23–iv31CrossRefPubMed
go back to reference Rock D, MacDonald R, Taylor C (1989) Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisaimde (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res 3:138–143CrossRefPubMed Rock D, MacDonald R, Taylor C (1989) Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisaimde (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res 3:138–143CrossRefPubMed
go back to reference Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52CrossRefPubMed Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52CrossRefPubMed
go back to reference Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, Beal MF, Volpe BT, Joh TH (2003) Age-related microglial activation in 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294CrossRefPubMed Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, Beal MF, Volpe BT, Joh TH (2003) Age-related microglial activation in 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294CrossRefPubMed
go back to reference Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 12:21–27CrossRefPubMed Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 12:21–27CrossRefPubMed
go back to reference Tanaka A, Watanabe Y, Kato H, Araki T (2007) Immunohistochemical changes to related ageing in the mouse hippocampus and subventicular zone. Mech Ageing Dev 128:303–310CrossRefPubMed Tanaka A, Watanabe Y, Kato H, Araki T (2007) Immunohistochemical changes to related ageing in the mouse hippocampus and subventicular zone. Mech Ageing Dev 128:303–310CrossRefPubMed
go back to reference Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206CrossRefPubMed Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206CrossRefPubMed
go back to reference Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771PubMed Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771PubMed
go back to reference Yabe H, Choudhury ME, Kubo M, Nishikawa N, Nagai M, Nomoto M (2009) Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J Pharmacol Sci 110:64–68CrossRefPubMed Yabe H, Choudhury ME, Kubo M, Nishikawa N, Nagai M, Nomoto M (2009) Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J Pharmacol Sci 110:64–68CrossRefPubMed
go back to reference Yano R, Yokoyama H, Kuroiwa H, Kato H, Araki T (2009) A novel anti-parkinsonian agent, zonisamide, attenuates MPTP-induced neurotoxicity in mice. J Mol Neurosci 39:211–219CrossRefPubMed Yano R, Yokoyama H, Kuroiwa H, Kato H, Araki T (2009) A novel anti-parkinsonian agent, zonisamide, attenuates MPTP-induced neurotoxicity in mice. J Mol Neurosci 39:211–219CrossRefPubMed
go back to reference Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115:831–842CrossRefPubMed Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115:831–842CrossRefPubMed
go back to reference Zigmond MJ, Stricker EM (1989) Animals models of parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 31:1–79CrossRefPubMed Zigmond MJ, Stricker EM (1989) Animals models of parkinsonism using selective neurotoxins: clinical and basic implications. Int Rev Neurobiol 31:1–79CrossRefPubMed
Metadata
Title
Therapeutic effect of a novel anti-parkinsonian agent zonisamide against MPTP (1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine) neurotoxicity in mice
Authors
Hironori Yokoyama
Ryohei Yano
Hayato Kuroiwa
Tatsuya Tsukada
Hiroto Uchida
Hiroyuki Kato
Jiro Kasahara
Tsutomu Araki
Publication date
01-09-2010
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 3/2010
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-010-9212-z

Other articles of this Issue 3/2010

Metabolic Brain Disease 3/2010 Go to the issue