Skip to main content
Top
Published in: Journal of Medical Systems 1/2023

Open Access 01-12-2023 | Ultrasound | Review

Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review

Authors: Sonit Singh, Shakira Hoque, Amany Zekry, Arcot Sowmya

Published in: Journal of Medical Systems | Issue 1/2023

Login to get access

Abstract

Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis, detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accuracy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.
Literature
1.
go back to reference Roderfeld M (2018) Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biology 68-69:452–462. SI : Fibrosis – Mechanisms and Translational Aspects Roderfeld M (2018) Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biology 68-69:452–462. SI : Fibrosis – Mechanisms and Translational Aspects
2.
go back to reference Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury *. Journal of Biological Chemistry 275(4):2247–2250PubMedCrossRef Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury *. Journal of Biological Chemistry 275(4):2247–2250PubMedCrossRef
3.
go back to reference García-Pagán JC, Gracia-Sancho J, Bosch J (2012) Functional aspects on the pathophysiology of portal hypertension in cirrhosis. Journal of Hepatology 57(2):458–461PubMedCrossRef García-Pagán JC, Gracia-Sancho J, Bosch J (2012) Functional aspects on the pathophysiology of portal hypertension in cirrhosis. Journal of Hepatology 57(2):458–461PubMedCrossRef
4.
go back to reference Röcken C, Carl-McGrath S (2001) Pathology and pathogenesis of hepatocellular carcinoma. Digestive Diseases 19(4):269–278PubMedCrossRef Röcken C, Carl-McGrath S (2001) Pathology and pathogenesis of hepatocellular carcinoma. Digestive Diseases 19(4):269–278PubMedCrossRef
5.
go back to reference Wolf E, Rich NE, Marrero JA, et al (2021) Use of hepatocellular carcinoma surveillance in patients with cirrhosis: A systematic review and meta-analysis. Hepatology 73(2):713–725PubMedCrossRef Wolf E, Rich NE, Marrero JA, et al (2021) Use of hepatocellular carcinoma surveillance in patients with cirrhosis: A systematic review and meta-analysis. Hepatology 73(2):713–725PubMedCrossRef
6.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. International Journal of Cancer 136(5):E359–E386PubMedCrossRef Ferlay J, Soerjomataram I, Dikshit R, et al (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. International Journal of Cancer 136(5):E359–E386PubMedCrossRef
7.
go back to reference Wang Cy, Li S (2019) Clinical characteristics and prognosis of 2887 patients with hepatocellular carcinoma: A single center 14 years experience from china. Medicine 98(4) Wang Cy, Li S (2019) Clinical characteristics and prognosis of 2887 patients with hepatocellular carcinoma: A single center 14 years experience from china. Medicine 98(4)
8.
go back to reference Siegel RL, Miller KD, Wagle NS, et al (2023) Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 73(1):17–48 Siegel RL, Miller KD, Wagle NS, et al (2023) Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 73(1):17–48
9.
go back to reference Di Lelio A, Cestari C, Lomazzi A, et al (1989) Cirrhosis: diagnosis with sonographic study of the liver surface. Radiology 172(2):389–392PubMedCrossRef Di Lelio A, Cestari C, Lomazzi A, et al (1989) Cirrhosis: diagnosis with sonographic study of the liver surface. Radiology 172(2):389–392PubMedCrossRef
10.
go back to reference Simonovský V (1999) The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. The British Journal of Radiology 72(853):29–34 Simonovský V (1999) The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. The British Journal of Radiology 72(853):29–34
11.
go back to reference Colli A, Fraquelli M, Andreoletti M, et al (2003) Severe liver fibrosis or cirrhosis: Accuracy of us for detection–analysis of 300 cases. Radiology 227(1):89–94PubMedCrossRef Colli A, Fraquelli M, Andreoletti M, et al (2003) Severe liver fibrosis or cirrhosis: Accuracy of us for detection–analysis of 300 cases. Radiology 227(1):89–94PubMedCrossRef
12.
go back to reference Kudo M, Zheng RQ, Kim SR, et al (2008) Diagnostic accuracy of imaging for liver cirrhosis compared to histologically proven liver cirrhosis. Intervirology 51(suppl 1)(Suppl. 1):17–26 Kudo M, Zheng RQ, Kim SR, et al (2008) Diagnostic accuracy of imaging for liver cirrhosis compared to histologically proven liver cirrhosis. Intervirology 51(suppl 1)(Suppl. 1):17–26
13.
go back to reference Heidelbaugh JJ, Bruderly M (2006) Cirrhosis and chronic liver failure: part i. diagnosis and evaluation. Am Fam Physician 74(5):756–762 Heidelbaugh JJ, Bruderly M (2006) Cirrhosis and chronic liver failure: part i. diagnosis and evaluation. Am Fam Physician 74(5):756–762
14.
go back to reference Berzigotti A, Piscaglia F, , et al (09.02.2012) Ultrasound in portal hypertension – part 2 – and efsumb recommendations for the performance and reporting of ultrasound examinations in portal hypertension. Ultraschall Med 33(01):8–32. 8 Berzigotti A, Piscaglia F, , et al (09.02.2012) Ultrasound in portal hypertension – part 2 – and efsumb recommendations for the performance and reporting of ultrasound examinations in portal hypertension. Ultraschall Med 33(01):8–32. 8
16.
go back to reference Ripoll C, Groszmann RJ, Garcia-Tsao G, et al (2009) Hepatic venous pressure gradient predicts development of hepatocellular carcinoma independently of severity of cirrhosis. Journal of hepatology 50(5):923–928PubMedPubMedCentralCrossRef Ripoll C, Groszmann RJ, Garcia-Tsao G, et al (2009) Hepatic venous pressure gradient predicts development of hepatocellular carcinoma independently of severity of cirrhosis. Journal of hepatology 50(5):923–928PubMedPubMedCentralCrossRef
17.
go back to reference Talwalkar JA, Kurtz DM, Schoenleber SJ, et al (2007) Ultrasound-based transient elastography for the detection of hepatic fibrosis: Systematic review and meta-analysis. Clinical Gastroenterology and Hepatology 5(10):1214–1220PubMedCrossRef Talwalkar JA, Kurtz DM, Schoenleber SJ, et al (2007) Ultrasound-based transient elastography for the detection of hepatic fibrosis: Systematic review and meta-analysis. Clinical Gastroenterology and Hepatology 5(10):1214–1220PubMedCrossRef
18.
go back to reference Singh S, Fujii LL, Murad MH, et al (2013) Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: A systematic review and meta-analysis. Clinical Gastroenterology and Hepatology 11(12):1573–1584.e2PubMedPubMedCentralCrossRef Singh S, Fujii LL, Murad MH, et al (2013) Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: A systematic review and meta-analysis. Clinical Gastroenterology and Hepatology 11(12):1573–1584.e2PubMedPubMedCentralCrossRef
19.
go back to reference Zissen MH, Wang ZJ, Yee J, et al (2013) Contrast-enhanced ct quantification of the hepatic fractional extracellular space: Correlation with diffuse liver disease severity. American Journal of Roentgenology 201(6):1204–1210PubMedCrossRef Zissen MH, Wang ZJ, Yee J, et al (2013) Contrast-enhanced ct quantification of the hepatic fractional extracellular space: Correlation with diffuse liver disease severity. American Journal of Roentgenology 201(6):1204–1210PubMedCrossRef
20.
go back to reference Van Beers BE, Leconte I, Materne R, et al (2001) Hepatic perfusion parameters in chronic liver disease. American Journal of Roentgenology 176(3):667–673PubMedCrossRef Van Beers BE, Leconte I, Materne R, et al (2001) Hepatic perfusion parameters in chronic liver disease. American Journal of Roentgenology 176(3):667–673PubMedCrossRef
21.
go back to reference Patel J, Sigmund EE, Rusinek H, et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion mri and dynamic contrast-enhanced mri alone and in combination: Preliminary experience. Journal of Magnetic Resonance Imaging 31(3):589–600PubMedCrossRef Patel J, Sigmund EE, Rusinek H, et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion mri and dynamic contrast-enhanced mri alone and in combination: Preliminary experience. Journal of Magnetic Resonance Imaging 31(3):589–600PubMedCrossRef
22.
go back to reference Taouli B, Tolia AJ, Losada M, et al (2007) Diffusion-weighted mri for quantification of liver fibrosis: Preliminary experience. American Journal of Roentgenology 189(4):799–806PubMedCrossRef Taouli B, Tolia AJ, Losada M, et al (2007) Diffusion-weighted mri for quantification of liver fibrosis: Preliminary experience. American Journal of Roentgenology 189(4):799–806PubMedCrossRef
23.
go back to reference Sharma S, Khalili K, Nguyen GC (2014) Non-invasive diagnosis of advanced fibrosis and cirrhosis. World journal of gastroenterology 20(45):16,820–16,830 Sharma S, Khalili K, Nguyen GC (2014) Non-invasive diagnosis of advanced fibrosis and cirrhosis. World journal of gastroenterology 20(45):16,820–16,830
24.
go back to reference Singal A, Volk ML, Waljee A, et al (2009) Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Alimentary Pharmacology & Therapeutics 30(1):37–47 Singal A, Volk ML, Waljee A, et al (2009) Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Alimentary Pharmacology & Therapeutics 30(1):37–47
25.
go back to reference Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 68(2):723–750PubMedCrossRef Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 68(2):723–750PubMedCrossRef
26.
go back to reference Colli A, Fraquelli M, Casazza G, et al (2006) Accuracy of ultrasonography, spiral ct, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: A systematic review. Official journal of the American College of Gastroenterology 101(3) Colli A, Fraquelli M, Casazza G, et al (2006) Accuracy of ultrasonography, spiral ct, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: A systematic review. Official journal of the American College of Gastroenterology 101(3)
27.
go back to reference Tzartzeva K, Obi J, Rich NE, et al (2018) Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 154(6):1706–1718.e1PubMedCrossRef Tzartzeva K, Obi J, Rich NE, et al (2018) Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 154(6):1706–1718.e1PubMedCrossRef
28.
go back to reference Yu NC, Chaudhari V, Raman SS, et al (2011) Ct and mri improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clinical Gastroenterology and Hepatology 9(2):161–167PubMedCrossRef Yu NC, Chaudhari V, Raman SS, et al (2011) Ct and mri improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clinical Gastroenterology and Hepatology 9(2):161–167PubMedCrossRef
29.
go back to reference Matsui O, Kobayashi S, Sanada J, et al (2011) Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted ct) with special reference to multi-step hepatocarcinogenesis. Abdominal Imaging 36(3):264–272PubMedPubMedCentralCrossRef Matsui O, Kobayashi S, Sanada J, et al (2011) Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted ct) with special reference to multi-step hepatocarcinogenesis. Abdominal Imaging 36(3):264–272PubMedPubMedCentralCrossRef
30.
go back to reference Chou R, Cuevas C, Fu R, et al (2015) Imaging techniques for the diagnosis of hepatocellular carcinoma. Annals of Internal Medicine 162(10):697–711PubMedCrossRef Chou R, Cuevas C, Fu R, et al (2015) Imaging techniques for the diagnosis of hepatocellular carcinoma. Annals of Internal Medicine 162(10):697–711PubMedCrossRef
31.
go back to reference Lee YJ, Lee JM, Lee JS, et al (2015) Hepatocellular carcinoma: Diagnostic performance of multidetector ct and mr imaging–a systematic review and meta-analysis. Radiology 275(1):97–109 Lee YJ, Lee JM, Lee JS, et al (2015) Hepatocellular carcinoma: Diagnostic performance of multidetector ct and mr imaging–a systematic review and meta-analysis. Radiology 275(1):97–109
32.
go back to reference Zhang J, Yu Y, Li Y, et al (2017) Diagnostic value of contrast-enhanced ultrasound in hepatocellular carcinoma: a meta-analysis with evidence from 1998 to 2016. Oncotarget 8(43):75,418–75,426 Zhang J, Yu Y, Li Y, et al (2017) Diagnostic value of contrast-enhanced ultrasound in hepatocellular carcinoma: a meta-analysis with evidence from 1998 to 2016. Oncotarget 8(43):75,418–75,426
33.
go back to reference Claudon M, Dietrich CF, Choi BI, et al (18.01.2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (ceus) in the liver – update 2012. Ultraschall Med 34(01):11–29. 11 Claudon M, Dietrich CF, Choi BI, et al (18.01.2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (ceus) in the liver – update 2012. Ultraschall Med 34(01):11–29. 11
34.
go back to reference Biselli M, Conti F, Gramenzi A, et al (2015) A new approach to the use of \(\alpha\)-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis. British journal of cancer 112(1):69–76PubMedCrossRef Biselli M, Conti F, Gramenzi A, et al (2015) A new approach to the use of \(\alpha\)-fetoprotein as surveillance test for hepatocellular carcinoma in patients with cirrhosis. British journal of cancer 112(1):69–76PubMedCrossRef
35.
go back to reference Villanueva A, Minguez B, Forner A, et al (2010) Hepatocellular carcinoma: Novel molecular approaches for diagnosis, prognosis, and therapy. Annual Review of Medicine 61(1):317–328PubMedPubMedCentralCrossRef Villanueva A, Minguez B, Forner A, et al (2010) Hepatocellular carcinoma: Novel molecular approaches for diagnosis, prognosis, and therapy. Annual Review of Medicine 61(1):317–328PubMedPubMedCentralCrossRef
36.
go back to reference Russell SJ, Norvig P (2009) Artificial Intelligence: a modern approach, 3rd edn. Pearson Russell SJ, Norvig P (2009) Artificial Intelligence: a modern approach, 3rd edn. Pearson
37.
go back to reference Mitchell TM (1997) Machine Learning, 1st edn. McGraw-Hill, Inc., USA Mitchell TM (1997) Machine Learning, 1st edn. McGraw-Hill, Inc., USA
38.
go back to reference Doi K (2007) Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics 31(4):198–211 Doi K (2007) Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics 31(4):198–211
40.
go back to reference Jain AK (1989) Fundamentals of Digital Image Processing. Prentice-Hall, Inc., USA Jain AK (1989) Fundamentals of Digital Image Processing. Prentice-Hall, Inc., USA
41.
go back to reference Benesty J, Chen J, Huang Y (2010) Study of the widely linear wiener filter for noise reduction. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 205–208 Benesty J, Chen J, Huang Y (2010) Study of the widely linear wiener filter for noise reduction. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 205–208
42.
go back to reference Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp 839–846 Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp 839–846
43.
go back to reference Wang M, Zheng S, Li X, et al (2014) A new image denoising method based on gaussian filter. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, pp 163–167 Wang M, Zheng S, Li X, et al (2014) A new image denoising method based on gaussian filter. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, pp 163–167
44.
go back to reference Gonzalez RC, Woods RE (2006) Digital Image Processing (3rd Edition). Prentice-Hall, Inc., USA Gonzalez RC, Woods RE (2006) Digital Image Processing (3rd Edition). Prentice-Hall, Inc., USA
45.
go back to reference Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization, Academic Press Professional, Inc., USA, p 474–485 Zuiderveld K (1994) Contrast Limited Adaptive Histogram Equalization, Academic Press Professional, Inc., USA, p 474–485
46.
go back to reference Yu D, Deng L (2014) Automatic Speech Recognition: A Deep Learning Approach. Springer Publishing Company, Incorporated Yu D, Deng L (2014) Automatic Speech Recognition: A Deep Learning Approach. Springer Publishing Company, Incorporated
47.
go back to reference Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. 3rd International Conference on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015 Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. 3rd International Conference on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015
48.
go back to reference Ren S, He K, Girshick R, et al (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes C, Lawrence N, Lee D, et al (eds) Advances in Neural Information Processing Systems, vol 28. Curran Associates, Inc. Ren S, He K, Girshick R, et al (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes C, Lawrence N, Lee D, et al (eds) Advances in Neural Information Processing Systems, vol 28. Curran Associates, Inc.
49.
go back to reference Karpathy A, Fei-Fei L (2017) Deep visual-semantic alignments for generating image descriptions. IEEE Trans Pattern Anal Mach Intell 39(4):664–676 Karpathy A, Fei-Fei L (2017) Deep visual-semantic alignments for generating image descriptions. IEEE Trans Pattern Anal Mach Intell 39(4):664–676
50.
go back to reference Agrawal A, Lu J, Antol S, et al (2017) Vqa: Visual question answering. Int J Comput Vision 123(1):4–31 Agrawal A, Lu J, Antol S, et al (2017) Vqa: Visual question answering. Int J Comput Vision 123(1):4–31
51.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, et al (eds) Advances in Neural Information Processing Systems, vol 25. Curran Associates, Inc. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, et al (eds) Advances in Neural Information Processing Systems, vol 25. Curran Associates, Inc.
52.
53.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, et al (eds) Advances in Neural Information Processing Systems, vol 27. Curran Associates, Inc. Goodfellow I, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, et al (eds) Advances in Neural Information Processing Systems, vol 27. Curran Associates, Inc.
54.
go back to reference Lecun Y, Bottou L, Bengio Y, et al (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, et al (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324CrossRef
55.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition
56.
go back to reference Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9 Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9
57.
go back to reference He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, pp 770–778CrossRef He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, pp 770–778CrossRef
58.
go back to reference Huang G, Liu Z, Van Der Maaten L, et al (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2261–2269 Huang G, Liu Z, Van Der Maaten L, et al (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2261–2269
59.
go back to reference Razavian AS, Azizpour H, Sullivan J, et al (2014) CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Ohio, United States, pp 512–519CrossRef Razavian AS, Azizpour H, Sullivan J, et al (2014) CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Ohio, United States, pp 512–519CrossRef
60.
go back to reference Deng J, Dong W, Socher R, et al (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255 Deng J, Dong W, Socher R, et al (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255
61.
go back to reference Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. Journal of Big Data 6(1):60CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. Journal of Big Data 6(1):60CrossRef
62.
go back to reference Bharti P, Mittal D, Ananthasivan R (2016) Computer-aided characterization and diagnosis of diffuse liver diseases based on ultrasound imaging. Ultrasonic Imaging 39(1):33–61PubMedCrossRef Bharti P, Mittal D, Ananthasivan R (2016) Computer-aided characterization and diagnosis of diffuse liver diseases based on ultrasound imaging. Ultrasonic Imaging 39(1):33–61PubMedCrossRef
63.
go back to reference Aubé C, Bazeries P, Lebigot J, et al (2017) Liver fibrosis, cirrhosis, and cirrhosis-related nodules: Imaging diagnosis and surveillance. Diagnostic and Interventional Imaging 98(6):455–468PubMedCrossRef Aubé C, Bazeries P, Lebigot J, et al (2017) Liver fibrosis, cirrhosis, and cirrhosis-related nodules: Imaging diagnosis and surveillance. Diagnostic and Interventional Imaging 98(6):455–468PubMedCrossRef
64.
go back to reference Jabarulla MY, Lee HN (2017) Computer aided diagnostic system for ultrasound liver images: A systematic review. Optik 140:1114–1126CrossRef Jabarulla MY, Lee HN (2017) Computer aided diagnostic system for ultrasound liver images: A systematic review. Optik 140:1114–1126CrossRef
65.
go back to reference Huang Q, Zhang F, Li X (2018) Machine learning in ultrasound computer-aided diagnostic systems: A survey. BioMed Research International 2018:10CrossRef Huang Q, Zhang F, Li X (2018) Machine learning in ultrasound computer-aided diagnostic systems: A survey. BioMed Research International 2018:10CrossRef
66.
go back to reference Akkus Z, Cai J, Boonrod A, et al (2019) A survey of deep-learning applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow. JACR Journal of the American College of Radiology 16(9):1318–1328 Akkus Z, Cai J, Boonrod A, et al (2019) A survey of deep-learning applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow. JACR Journal of the American College of Radiology 16(9):1318–1328
67.
go back to reference Decharatanachart P, Chaiteerakij R, Tiyarattanachai T, et al (2021) Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterology 21(1):10PubMedPubMedCentralCrossRef Decharatanachart P, Chaiteerakij R, Tiyarattanachai T, et al (2021) Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterology 21(1):10PubMedPubMedCentralCrossRef
68.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372
69.
go back to reference Gao L, Zhou R, Dong C, et al (2021) Multi-modal active learning for automatic liver fibrosis diagnosis based on ultrasound shear wave elastography. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp 410–414 Gao L, Zhou R, Dong C, et al (2021) Multi-modal active learning for automatic liver fibrosis diagnosis based on ultrasound shear wave elastography. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp 410–414
70.
go back to reference Xue LY, Jiang ZY, Fu TT, et al (2020) Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. European Radiology 30(5):2973–2983PubMedPubMedCentralCrossRef Xue LY, Jiang ZY, Fu TT, et al (2020) Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis. European Radiology 30(5):2973–2983PubMedPubMedCentralCrossRef
71.
go back to reference Ribeiro R, Marinho R, Velosa J, et al (2011) Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 707–710 Ribeiro R, Marinho R, Velosa J, et al (2011) Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 707–710
72.
go back to reference Wang J, Guo L, Shi X, et al (2012) Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis b. European Journal of Radiology 81(1):e31–e36PubMedCrossRef Wang J, Guo L, Shi X, et al (2012) Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis b. European Journal of Radiology 81(1):e31–e36PubMedCrossRef
73.
go back to reference Meng D, Zhang L, Cao G, et al (2017) Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5:5804–5810 Meng D, Zhang L, Cao G, et al (2017) Liver fibrosis classification based on transfer learning and fcnet for ultrasound images. IEEE Access 5:5804–5810
74.
go back to reference Chen Y, Luo Y, Huang W, et al (2017) Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis b. Computers in biology and medicine 89:18–23 Chen Y, Luo Y, Huang W, et al (2017) Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis b. Computers in biology and medicine 89:18–23
75.
go back to reference Li W, Huang Y, Zhuang BW, et al (2019) Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis. European Radiology 29(3):1496–1506PubMedCrossRef Li W, Huang Y, Zhuang BW, et al (2019) Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis. European Radiology 29(3):1496–1506PubMedCrossRef
76.
go back to reference Liu J, Wang W, Guan T, et al (2019) Ultrasound liver fibrosis diagnosis using multi-indicator guided deep neural networks. In: Suk HI, Liu M, Yan P, et al (eds) Machine Learning in Medical Imaging. Springer International Publishing, Cham, pp 230–237CrossRef Liu J, Wang W, Guan T, et al (2019) Ultrasound liver fibrosis diagnosis using multi-indicator guided deep neural networks. In: Suk HI, Liu M, Yan P, et al (eds) Machine Learning in Medical Imaging. Springer International Publishing, Cham, pp 230–237CrossRef
77.
go back to reference Lee JH, Joo I, Kang TW, et al (2020) Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. European Radiology 30(2):1264–1273PubMedCrossRef Lee JH, Joo I, Kang TW, et al (2020) Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. European Radiology 30(2):1264–1273PubMedCrossRef
78.
go back to reference Trombini M, Borro P, Ziola S, et al (2020) A digital image processing approach for hepatic diseases staging based on the glisson–capsule. In: 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), pp 1–6 Trombini M, Borro P, Ziola S, et al (2020) A digital image processing approach for hepatic diseases staging based on the glisson–capsule. In: 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), pp 1–6
79.
go back to reference Zamanian H, Mostaar A, Azadeh P, et al (2021) Implementation of combinational deep learning algorithm for non-alcoholic fatty liver classification in ultrasound images. Journal of biomedical physics & engineering 11(1):73–84CrossRef Zamanian H, Mostaar A, Azadeh P, et al (2021) Implementation of combinational deep learning algorithm for non-alcoholic fatty liver classification in ultrasound images. Journal of biomedical physics & engineering 11(1):73–84CrossRef
80.
go back to reference Feng X, Chen X, Dong C, et al (2022) Multi-scale information with attention integration for classification of liver fibrosis in b-mode us image. Computer Methods and Programs in Biomedicine 215:106,598 Feng X, Chen X, Dong C, et al (2022) Multi-scale information with attention integration for classification of liver fibrosis in b-mode us image. Computer Methods and Programs in Biomedicine 215:106,598
81.
go back to reference Z. S. Jabbar AAKA. Q. Al-Neami, Salih SM (2023) Liver fibrosis processing, multiclassification, and diagnosis based on hybrid machine learning approaches. Indonesian Journal of Electrical Engineering and Computer Science 29(3) Z. S. Jabbar AAKA. Q. Al-Neami, Salih SM (2023) Liver fibrosis processing, multiclassification, and diagnosis based on hybrid machine learning approaches. Indonesian Journal of Electrical Engineering and Computer Science 29(3)
82.
go back to reference Xie Y, Chen S, Jia D, et al (2022) Artificial intelligence-based feature analysis of ultrasound images of liver fibrosis. Computational Intelligence and Neuroscience 2022:2859,987 Xie Y, Chen S, Jia D, et al (2022) Artificial intelligence-based feature analysis of ultrasound images of liver fibrosis. Computational Intelligence and Neuroscience 2022:2859,987
83.
go back to reference Lei Ym, Zhao Xm, Guo Wd (2015) Cirrhosis recognition of liver ultrasound images based on svm and uniform lbp feature. In: 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp 382–387 Lei Ym, Zhao Xm, Guo Wd (2015) Cirrhosis recognition of liver ultrasound images based on svm and uniform lbp feature. In: 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp 382–387
84.
go back to reference Liu X, Song JL, Wang SH, et al (2017) Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors (Basel, Switzerland) 17(1):149PubMedCrossRef Liu X, Song JL, Wang SH, et al (2017) Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors (Basel, Switzerland) 17(1):149PubMedCrossRef
85.
go back to reference Rabie R, Eltoukhy MM, al Shatouri M, et al (2018) Computer aided diagnosis system for liver cirrhosis based on ultrasound images. In: Proceedings of the 7th International Conference on Software and Information Engineering. Association for Computing Machinery, New York, NY, USA, ICSIE ’18, p 68–71 Rabie R, Eltoukhy MM, al Shatouri M, et al (2018) Computer aided diagnosis system for liver cirrhosis based on ultrasound images. In: Proceedings of the 7th International Conference on Software and Information Engineering. Association for Computing Machinery, New York, NY, USA, ICSIE ’18, p 68–71
86.
go back to reference Aggarwal K, Bhamrah MS, Ryait HS (2019) Detection of cirrhosis through ultrasound imaging by intensity difference technique. EURASIP Journal on Image and Video Processing 2019(1):80CrossRef Aggarwal K, Bhamrah MS, Ryait HS (2019) Detection of cirrhosis through ultrasound imaging by intensity difference technique. EURASIP Journal on Image and Video Processing 2019(1):80CrossRef
87.
go back to reference Mitani Y, Fisher RB, Fujita Y, et al (2020) Cirrhosis liver classification on b-mode ultrasound images by convolution neural networks with augmented images. International Journal of Machine Learning and Computing 10(6):723–728CrossRef Mitani Y, Fisher RB, Fujita Y, et al (2020) Cirrhosis liver classification on b-mode ultrasound images by convolution neural networks with augmented images. International Journal of Machine Learning and Computing 10(6):723–728CrossRef
88.
go back to reference Yang H, Sun X, Sun Y, et al (2020) Ultrasound image-based diagnosis of cirrhosis with an end-to-end deep learning model. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp 1193–1196 Yang H, Sun X, Sun Y, et al (2020) Ultrasound image-based diagnosis of cirrhosis with an end-to-end deep learning model. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp 1193–1196
89.
go back to reference Drazinos P, Tsantis S, Zoumpoulis P, et al (2020) A deep learning approach on cirrhosis diagnosis utilizing ultrasound b-mode images of segmented liver left lobes using liver biopsy as the gold standard. In: 2020 American Association of Physicists in Medicine (AAPM Drazinos P, Tsantis S, Zoumpoulis P, et al (2020) A deep learning approach on cirrhosis diagnosis utilizing ultrasound b-mode images of segmented liver left lobes using liver biopsy as the gold standard. In: 2020 American Association of Physicists in Medicine (AAPM
90.
go back to reference Ossama A, Ahmed O, Hashem M, et al (2022) Automatic classification of diffuse liver diseases: Cirrhosis and hepatosteatosis using ultrasound images. In: 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp 246–250 Ossama A, Ahmed O, Hashem M, et al (2022) Automatic classification of diffuse liver diseases: Cirrhosis and hepatosteatosis using ultrasound images. In: 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp 246–250
91.
go back to reference Ribeiro R, Sanches J (2009) Fatty liver characterization and classification by ultrasound. In: Araujo H, Mendonça AM, Pinho AJ, et al (eds) Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 354–361CrossRef Ribeiro R, Sanches J (2009) Fatty liver characterization and classification by ultrasound. In: Araujo H, Mendonça AM, Pinho AJ, et al (eds) Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 354–361CrossRef
92.
go back to reference Acharya UR, Sree SV, Ribeiro R, et al (2012) Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm. Medical Physics 39(7Part1):4255–4264 Acharya UR, Sree SV, Ribeiro R, et al (2012) Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm. Medical Physics 39(7Part1):4255–4264
93.
go back to reference Minhas FuAA, Sabih D, Hussain M (2012) Automated classification of liver disorders using ultrasound images. Journal of Medical Systems 36(5):3163–3172PubMedCrossRef Minhas FuAA, Sabih D, Hussain M (2012) Automated classification of liver disorders using ultrasound images. Journal of Medical Systems 36(5):3163–3172PubMedCrossRef
94.
go back to reference Singh M, Singh S, Gupta S (2014) An information fusion based method for liver classification using texture analysis of ultrasound images. Information Fusion 19:91–96. Special Issue on Information Fusion in Medical Image Computing and Systems Singh M, Singh S, Gupta S (2014) An information fusion based method for liver classification using texture analysis of ultrasound images. Information Fusion 19:91–96. Special Issue on Information Fusion in Medical Image Computing and Systems
95.
go back to reference Subramanya MB, Kumar V, Mukherjee S, et al (2015) A cad system for b-mode fatty liver ultrasound images using texture features. Journal of Medical Engineering & Technology 39(2):123–130CrossRef Subramanya MB, Kumar V, Mukherjee S, et al (2015) A cad system for b-mode fatty liver ultrasound images using texture features. Journal of Medical Engineering & Technology 39(2):123–130CrossRef
96.
go back to reference Liao YY, Yang KC, Lee MJ, et al (2016) Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Scientific Reports 6(1):35,083 Liao YY, Yang KC, Lee MJ, et al (2016) Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Scientific Reports 6(1):35,083
97.
go back to reference Acharya UR, Fujita H, Bhat S, et al (2016a) Decision support system for fatty liver disease using gist descriptors extracted from ultrasound images. Information Fusion 29:32–39 Acharya UR, Fujita H, Bhat S, et al (2016a) Decision support system for fatty liver disease using gist descriptors extracted from ultrasound images. Information Fusion 29:32–39
98.
go back to reference Acharya UR, Fujita H, Sudarshan VK, et al (2016b) An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Information Fusion 31:43–53 Acharya UR, Fujita H, Sudarshan VK, et al (2016b) An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Information Fusion 31:43–53
99.
go back to reference Kuppili V, Biswas M, Sreekumar A, et al (2017) Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. J Med Syst 41(10):1–20 Kuppili V, Biswas M, Sreekumar A, et al (2017) Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. J Med Syst 41(10):1–20
100.
go back to reference Bharath R, Mishra PK, Rajalakshmi P (2018) Automated quantification of ultrasonic fatty liver texture based on curvelet transform and svd. Biocybernetics and Biomedical Engineering 38(1):145–157CrossRef Bharath R, Mishra PK, Rajalakshmi P (2018) Automated quantification of ultrasonic fatty liver texture based on curvelet transform and svd. Biocybernetics and Biomedical Engineering 38(1):145–157CrossRef
101.
go back to reference Sharma V, Juglan K (2018) Automated classification of fatty and normal liver ultrasound images based on mutual information feature selection. IRBM 39(5):313–323CrossRef Sharma V, Juglan K (2018) Automated classification of fatty and normal liver ultrasound images based on mutual information feature selection. IRBM 39(5):313–323CrossRef
102.
go back to reference Biswas M, Kuppili V, Edla DR, et al (2018) Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Computer Methods and Programs in Biomedicine 155:165–177PubMedCrossRef Biswas M, Kuppili V, Edla DR, et al (2018) Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Computer Methods and Programs in Biomedicine 155:165–177PubMedCrossRef
103.
go back to reference Byra M, Styczynski G, Szmigielski C, et al (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of Computer Assisted Radiology and Surgery 13(12):1895–1903PubMedPubMedCentralCrossRef Byra M, Styczynski G, Szmigielski C, et al (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of Computer Assisted Radiology and Surgery 13(12):1895–1903PubMedPubMedCentralCrossRef
104.
go back to reference Amin MN, Rushdi MA, Marzaban RN, et al (2019) Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional b-mode ultrasound images. Biomedical signal processing and control 52:84–96PubMedPubMedCentralCrossRef Amin MN, Rushdi MA, Marzaban RN, et al (2019) Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional b-mode ultrasound images. Biomedical signal processing and control 52:84–96PubMedPubMedCentralCrossRef
105.
go back to reference Bharath R, Rajalakshmi P (2019) Nonalcoholic fatty liver texture characterization based on transfer deep scattering convolution network and ensemble subspace knn classifier. In: 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pp 1–4 Bharath R, Rajalakshmi P (2019) Nonalcoholic fatty liver texture characterization based on transfer deep scattering convolution network and ensemble subspace knn classifier. In: 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pp 1–4
106.
go back to reference Wu CC, Yeh WC, Hsu WD, et al (2019) Prediction of fatty liver disease using machine learning algorithms. Computer Methods and Programs in Biomedicine 170:23–29PubMedCrossRef Wu CC, Yeh WC, Hsu WD, et al (2019) Prediction of fatty liver disease using machine learning algorithms. Computer Methods and Programs in Biomedicine 170:23–29PubMedCrossRef
107.
go back to reference Han A, Byra M, Heba E, et al (2020) Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks. Radiology 295(2):342–350PubMedCrossRef Han A, Byra M, Heba E, et al (2020) Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks. Radiology 295(2):342–350PubMedCrossRef
108.
go back to reference Cao W, An X, Cong L, et al (2020) Application of deep learning in quantitative analysis of 2-dimensional ultrasound imaging of nonalcoholic fatty liver disease. Journal of Ultrasound in Medicine 39(1):51–59PubMedCrossRef Cao W, An X, Cong L, et al (2020) Application of deep learning in quantitative analysis of 2-dimensional ultrasound imaging of nonalcoholic fatty liver disease. Journal of Ultrasound in Medicine 39(1):51–59PubMedCrossRef
109.
go back to reference Che H, Brown LG, Foran DJ, et al (2021) Liver disease classification from ultrasound using multi-scale cnn. International Journal of Computer Assisted Radiology and Surgery 16(9):1537–1548PubMedCrossRef Che H, Brown LG, Foran DJ, et al (2021) Liver disease classification from ultrasound using multi-scale cnn. International Journal of Computer Assisted Radiology and Surgery 16(9):1537–1548PubMedCrossRef
110.
go back to reference Chou TH, Yeh HJ, Chang CC, et al (2021) Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver. Journal of the Chinese Medical Association 84(9) Chou TH, Yeh HJ, Chang CC, et al (2021) Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver. Journal of the Chinese Medical Association 84(9)
111.
go back to reference Kim T, Lee DH, Park EK, et al (2021) Deep learning techniques for fatty liver using multi-view ultrasound images scanned by different scanners: Development and validation study. JMIR Med Inform 9(11):e30,066 Kim T, Lee DH, Park EK, et al (2021) Deep learning techniques for fatty liver using multi-view ultrasound images scanned by different scanners: Development and validation study. JMIR Med Inform 9(11):e30,066
112.
go back to reference Gaber A, Youness HA, Hamdy A, et al (2022) Automatic classification of fatty liver disease based on supervised learning and genetic algorithm. Applied Sciences 12(1) Gaber A, Youness HA, Hamdy A, et al (2022) Automatic classification of fatty liver disease based on supervised learning and genetic algorithm. Applied Sciences 12(1)
113.
go back to reference Tahmasebi A, Wang S, Wessner CE, et al (2023) Ultrasound-based machine learning approach for detection of nonalcoholic fatty liver disease. Journal of Ultrasound in Medicine n/a(n/a) Tahmasebi A, Wang S, Wessner CE, et al (2023) Ultrasound-based machine learning approach for detection of nonalcoholic fatty liver disease. Journal of Ultrasound in Medicine n/a(n/a)
114.
go back to reference Wu CH, Hung CL, Lee TY, et al (2022) Fatty liver diagnosis using deep learning in ultrasound image. In: 2022 IEEE International Conference on Digital Health (ICDH), pp 185–192 Wu CH, Hung CL, Lee TY, et al (2022) Fatty liver diagnosis using deep learning in ultrasound image. In: 2022 IEEE International Conference on Digital Health (ICDH), pp 185–192
115.
go back to reference Sayed Abou Zaid AZ, Fakhr MW, Ali Mohamed AF (2006) Automatic diagnosis of liver diseases from ultrasound images. In: 2006 International Conference on Computer Engineering and Systems, pp 313–319 Sayed Abou Zaid AZ, Fakhr MW, Ali Mohamed AF (2006) Automatic diagnosis of liver diseases from ultrasound images. In: 2006 International Conference on Computer Engineering and Systems, pp 313–319
116.
go back to reference Acharya UR, Raghavendra U, Fujita H, et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Computers in Biology and Medicine 79:250–258PubMedCrossRef Acharya UR, Raghavendra U, Fujita H, et al (2016) Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Computers in Biology and Medicine 79:250–258PubMedCrossRef
117.
go back to reference Owjimehr M, Danyali H, Helfroush MS, et al (2017) Staging of fatty liver diseases based on hierarchical classification and feature fusion for back-scan–converted ultrasound images. Ultrasonic Imaging 39(2):79–95 Owjimehr M, Danyali H, Helfroush MS, et al (2017) Staging of fatty liver diseases based on hierarchical classification and feature fusion for back-scan–converted ultrasound images. Ultrasonic Imaging 39(2):79–95
118.
go back to reference Xu SSD, Chang CC, Su CT, et al (2019) Classification of liver diseases based on ultrasound image texture features. Applied Sciences 9(2) Xu SSD, Chang CC, Su CT, et al (2019) Classification of liver diseases based on ultrasound image texture features. Applied Sciences 9(2)
119.
go back to reference Mabrouk AG, Hamdy A, Abdelaal HM, et al (2021) Automatic classification algorithm for diffused liver diseases based on ultrasound images. IEEE Access 9:5760–5768CrossRef Mabrouk AG, Hamdy A, Abdelaal HM, et al (2021) Automatic classification algorithm for diffused liver diseases based on ultrasound images. IEEE Access 9:5760–5768CrossRef
120.
go back to reference Pasyar P, Mahmoudi T, Kouzehkanan SZM, et al (2021) Hybrid classification of diffuse liver diseases in ultrasound images using deep convolutional neural networks. Informatics in Medicine Unlocked 22:100,496 Pasyar P, Mahmoudi T, Kouzehkanan SZM, et al (2021) Hybrid classification of diffuse liver diseases in ultrasound images using deep convolutional neural networks. Informatics in Medicine Unlocked 22:100,496
121.
go back to reference Nastenko I, Maksymenko V, Galkin A, et al (2021) Liver pathological states identification with self-organization models based on ultrasound images texture features. In: Shakhovska N, Medykovskyy MO (eds) Advances in Intelligent Systems and Computing V. Springer International Publishing, Cham, pp 401–418 Nastenko I, Maksymenko V, Galkin A, et al (2021) Liver pathological states identification with self-organization models based on ultrasound images texture features. In: Shakhovska N, Medykovskyy MO (eds) Advances in Intelligent Systems and Computing V. Springer International Publishing, Cham, pp 401–418
122.
go back to reference Xian Gm (2010) An identification method of malignant and benign liver tumors from ultrasonography based on glcm texture features and fuzzy svm. Expert Syst Appl 37(10):6737–6741 Xian Gm (2010) An identification method of malignant and benign liver tumors from ultrasonography based on glcm texture features and fuzzy svm. Expert Syst Appl 37(10):6737–6741
123.
go back to reference Mittal D, Kumar V, Saxena SC, et al (2011) Neural network based focal liver lesion diagnosis using ultrasound images. Computerized Medical Imaging and Graphics 35(4):315–323PubMedCrossRef Mittal D, Kumar V, Saxena SC, et al (2011) Neural network based focal liver lesion diagnosis using ultrasound images. Computerized Medical Imaging and Graphics 35(4):315–323PubMedCrossRef
124.
go back to reference Virmani J, Kumar V, Kalra N, et al (2013) Characterization of primary and secondary malignant liver lesions from b-mode ultrasound. Journal of Digital Imaging 26(6):1058–1070PubMedPubMedCentralCrossRef Virmani J, Kumar V, Kalra N, et al (2013) Characterization of primary and secondary malignant liver lesions from b-mode ultrasound. Journal of Digital Imaging 26(6):1058–1070PubMedPubMedCentralCrossRef
125.
go back to reference Jeon JH, Choi JY, Lee S, et al (2013) Multiple roi selection based focal liver lesion classification in ultrasound images. Expert Systems with Applications 40(2):450–457CrossRef Jeon JH, Choi JY, Lee S, et al (2013) Multiple roi selection based focal liver lesion classification in ultrasound images. Expert Systems with Applications 40(2):450–457CrossRef
126.
go back to reference Virmani J, Kumar V, Kalra N, et al (2013) Svm-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging 26(3):530–543PubMedCrossRef Virmani J, Kumar V, Kalra N, et al (2013) Svm-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging 26(3):530–543PubMedCrossRef
127.
go back to reference Virmani J, Kumar V, Kalra N, et al (2014) Neural network ensemble based cad system for focal liver lesions from b-mode ultrasound. Journal of Digital Imaging 27(4):520–537PubMedPubMedCentralCrossRef Virmani J, Kumar V, Kalra N, et al (2014) Neural network ensemble based cad system for focal liver lesions from b-mode ultrasound. Journal of Digital Imaging 27(4):520–537PubMedPubMedCentralCrossRef
128.
go back to reference Kalyan K, Jakhia B, Dattatraya Lele R, et al (2014) Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Advances in Bioinformatics 2014(6):14 Kalyan K, Jakhia B, Dattatraya Lele R, et al (2014) Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Advances in Bioinformatics 2014(6):14
129.
go back to reference Wu K, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 125(15):4057–4063CrossRef Wu K, Chen X, Ding M (2014) Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 125(15):4057–4063CrossRef
130.
go back to reference Sakr AA, Fares ME, Ramadan M (2014) Automated focal liver lesion staging classification based on haralick texture features and multi-svm. International Journal of Computer Applications 91(8):17–25CrossRef Sakr AA, Fares ME, Ramadan M (2014) Automated focal liver lesion staging classification based on haralick texture features and multi-svm. International Journal of Computer Applications 91(8):17–25CrossRef
131.
go back to reference Gatos I, Tsantis S, Spiliopoulos S, et al (2015) A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound. Medical Physics 42(7):3948–3959PubMedCrossRef Gatos I, Tsantis S, Spiliopoulos S, et al (2015) A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound. Medical Physics 42(7):3948–3959PubMedCrossRef
132.
go back to reference Hwang YN, Lee JH, Kim GY, et al (2015) Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network. Bio-Medical Materials and Engineering 26:S1599–S1611PubMedCrossRef Hwang YN, Lee JH, Kim GY, et al (2015) Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network. Bio-Medical Materials and Engineering 26:S1599–S1611PubMedCrossRef
133.
go back to reference Rani A, Mittal D (2016) Detection and classification of focal liver lesions using support vector machine classifiers. Journal of Biomedical Engineering and Medical Imaging 3:21 Rani A, Mittal D (2016) Detection and classification of focal liver lesions using support vector machine classifiers. Journal of Biomedical Engineering and Medical Imaging 3:21
134.
go back to reference Hassan TM, Elmogy M, Sallam ES (2017) Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arabian Journal for Science and Engineering 42(8):3127–3140CrossRef Hassan TM, Elmogy M, Sallam ES (2017) Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arabian Journal for Science and Engineering 42(8):3127–3140CrossRef
135.
go back to reference Krishnan KR, Radhakrishnan S (2017) Hybrid approach to classification of focal and diffused liver disorders using ultrasound images with wavelets and texture features. IET Image Processing 11:530–538(8) Krishnan KR, Radhakrishnan S (2017) Hybrid approach to classification of focal and diffused liver disorders using ultrasound images with wavelets and texture features. IET Image Processing 11:530–538(8)
136.
go back to reference Acharya UR, Koh JEW, Hagiwara Y, et al (2018) Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features. Computers in Biology and Medicine 94:11–18PubMedCrossRef Acharya UR, Koh JEW, Hagiwara Y, et al (2018) Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features. Computers in Biology and Medicine 94:11–18PubMedCrossRef
137.
go back to reference Yao Z, Dong Y, Wu G, et al (2018) Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer 18(1):1089PubMedPubMedCentralCrossRef Yao Z, Dong Y, Wu G, et al (2018) Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer 18(1):1089PubMedPubMedCentralCrossRef
138.
go back to reference Guo LH, Wang D, Qian YY, et al (2018) A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clinical Hemorheology and Microcirculation 69:343–354PubMedCrossRef Guo LH, Wang D, Qian YY, et al (2018) A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clinical Hemorheology and Microcirculation 69:343–354PubMedCrossRef
139.
go back to reference Pan F, Huang Q, Li X (2019) Classification of liver tumors with ceus based on 3d-cnn. In: 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), pp 845–849 Pan F, Huang Q, Li X (2019) Classification of liver tumors with ceus based on 3d-cnn. In: 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), pp 845–849
140.
go back to reference Schmauch B, Herent P, Jehanno P, et al (2019) Diagnosis of focal liver lesions from ultrasound using deep learning. Diagnostic and Interventional Imaging 100(4):227–233PubMedCrossRef Schmauch B, Herent P, Jehanno P, et al (2019) Diagnosis of focal liver lesions from ultrasound using deep learning. Diagnostic and Interventional Imaging 100(4):227–233PubMedCrossRef
141.
go back to reference Yang Q, Wei J, Hao X, et al (2020) Improving b-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBioMedicine 56 Yang Q, Wei J, Hao X, et al (2020) Improving b-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBioMedicine 56
142.
go back to reference Mostafiz R, Rahman MM, Islam AKMK, et al (2020) Focal liver lesion detection in ultrasound image using deep feature fusions and super resolution. Machine Learning and Knowledge Extraction 2(3):172–191CrossRef Mostafiz R, Rahman MM, Islam AKMK, et al (2020) Focal liver lesion detection in ultrasound image using deep feature fusions and super resolution. Machine Learning and Knowledge Extraction 2(3):172–191CrossRef
143.
go back to reference Tiyarattanachai T, Apiparakoon T, Marukatat S, et al (2021) Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images. PLOS ONE 16(6):1–14CrossRef Tiyarattanachai T, Apiparakoon T, Marukatat S, et al (2021) Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images. PLOS ONE 16(6):1–14CrossRef
144.
go back to reference Hu HT, Wang W, Chen LD, et al (2021) Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound. Journal of gastroenterology and hepatology 36(10):2875–2883PubMedPubMedCentralCrossRef Hu HT, Wang W, Chen LD, et al (2021) Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound. Journal of gastroenterology and hepatology 36(10):2875–2883PubMedPubMedCentralCrossRef
145.
go back to reference Căleanu CD, Sîrbu CL, Simion G (2021) Deep neural architectures for contrast enhanced ultrasound (ceus) focal liver lesions automated diagnosis. Sensors 21(12) Căleanu CD, Sîrbu CL, Simion G (2021) Deep neural architectures for contrast enhanced ultrasound (ceus) focal liver lesions automated diagnosis. Sensors 21(12)
146.
go back to reference Ryu H, Shin SY, Lee JY, et al (2021) Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning. European Radiology Ryu H, Shin SY, Lee JY, et al (2021) Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning. European Radiology
147.
go back to reference Kim N, Lee WJ, Lee HJ (2023) Deep learning classification of focal liver lesions with contrast-enhanced ultrasound from arterial phase recordings. In: 2023 International Conference on Electronics, Information, and Communication (ICEIC), pp 1–3 Kim N, Lee WJ, Lee HJ (2023) Deep learning classification of focal liver lesions with contrast-enhanced ultrasound from arterial phase recordings. In: 2023 International Conference on Electronics, Information, and Communication (ICEIC), pp 1–3
148.
go back to reference Turco S, Tiyarattanachai T, Ebrahimkheil K, et al (2022) Interpretable machine learning for characterization of focal liver lesions by contrast-enhanced ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 69(5):1670–1681PubMedPubMedCentralCrossRef Turco S, Tiyarattanachai T, Ebrahimkheil K, et al (2022) Interpretable machine learning for characterization of focal liver lesions by contrast-enhanced ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 69(5):1670–1681PubMedPubMedCentralCrossRef
149.
go back to reference Singal AG, Mukherjee A, Elmunzer JB, et al (2013) Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Official journal of the American College of Gastroenterology 108(11) Singal AG, Mukherjee A, Elmunzer JB, et al (2013) Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Official journal of the American College of Gastroenterology 108(11)
150.
go back to reference Brehar R, Mitrea DA, Vancea F, et al (2020) Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors 20(11) Brehar R, Mitrea DA, Vancea F, et al (2020) Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors 20(11)
151.
go back to reference Jin J, Yao Z, Zhang T, et al (2021) Deep learning radiomics model accurately predicts hepatocellular carcinoma occurrence in chronic hepatitis b patients: a five-year follow-up. American journal of cancer research 11(2):576–589PubMedPubMedCentral Jin J, Yao Z, Zhang T, et al (2021) Deep learning radiomics model accurately predicts hepatocellular carcinoma occurrence in chronic hepatitis b patients: a five-year follow-up. American journal of cancer research 11(2):576–589PubMedPubMedCentral
152.
go back to reference Ma QP, He Xl, Li K, et al (2021) Dynamic contrast-enhanced ultrasound radiomics for hepatocellular carcinoma recurrence prediction after thermal ablation. Molecular Imaging and Biology 23(4):572–585PubMedCrossRef Ma QP, He Xl, Li K, et al (2021) Dynamic contrast-enhanced ultrasound radiomics for hepatocellular carcinoma recurrence prediction after thermal ablation. Molecular Imaging and Biology 23(4):572–585PubMedCrossRef
153.
go back to reference Mitrea D, Badea R, Mitrea P, et al (2021) Hepatocellular carcinoma automatic diagnosis within ceus and b-mode ultrasound images using advanced machine learning methods. Sensors 21(6) Mitrea D, Badea R, Mitrea P, et al (2021) Hepatocellular carcinoma automatic diagnosis within ceus and b-mode ultrasound images using advanced machine learning methods. Sensors 21(6)
154.
go back to reference Zhou H, Jiang T, Li Q, et al (2021) Us-based deep learning model for differentiating hepatocellular carcinoma (hcc) from other malignancy in cirrhotic patients. Frontiers in Oncology 11 Zhou H, Jiang T, Li Q, et al (2021) Us-based deep learning model for differentiating hepatocellular carcinoma (hcc) from other malignancy in cirrhotic patients. Frontiers in Oncology 11
155.
go back to reference Feng X, Cai W, Zheng R, et al (2023) Diagnosis of hepatocellular carcinoma using deep network with multi-view enhanced patterns mined in contrast-enhanced ultrasound data. Engineering Applications of Artificial Intelligence 118:105,635 Feng X, Cai W, Zheng R, et al (2023) Diagnosis of hepatocellular carcinoma using deep network with multi-view enhanced patterns mined in contrast-enhanced ultrasound data. Engineering Applications of Artificial Intelligence 118:105,635
156.
go back to reference Mitrea DA, Brehar R, Nedevschi S, et al (2023) Hepatocellular carcinoma recognition from ultrasound images using combinations of conventional and deep learning techniques. Sensors 23(5) Mitrea DA, Brehar R, Nedevschi S, et al (2023) Hepatocellular carcinoma recognition from ultrasound images using combinations of conventional and deep learning techniques. Sensors 23(5)
157.
go back to reference Liang X, Lin L, Cao Q, et al (2016) Recognizing focal liver lesions in ceus with dynamically trained latent structured models. IEEE Transactions on Medical Imaging 35(3):713–727PubMedCrossRef Liang X, Lin L, Cao Q, et al (2016) Recognizing focal liver lesions in ceus with dynamically trained latent structured models. IEEE Transactions on Medical Imaging 35(3):713–727PubMedCrossRef
158.
go back to reference Bilic P, Christ PF, Vorontsov E, et al (2019) The liver tumor segmentation benchmark (lits). CoRR abs/1901.04056 Bilic P, Christ PF, Vorontsov E, et al (2019) The liver tumor segmentation benchmark (lits). CoRR abs/1901.04056
159.
go back to reference Ginneken BV, Heimann T, Styner M (2007) 3d segmentation in the clinic: A grand challenge. In: In: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge. (2007 Ginneken BV, Heimann T, Styner M (2007) 3d segmentation in the clinic: A grand challenge. In: In: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge. (2007
160.
go back to reference Kavur AE, Gezer NS, Barış M, et al (2021) Chaos challenge - combined (ct-mr) healthy abdominal organ segmentation. Medical Image Analysis 69:101,950 Kavur AE, Gezer NS, Barış M, et al (2021) Chaos challenge - combined (ct-mr) healthy abdominal organ segmentation. Medical Image Analysis 69:101,950
161.
go back to reference Gibson E, Giganti F, Hu Y, et al (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. IEEE Transactions on Medical Imaging 37(8):1822–1834PubMedPubMedCentralCrossRef Gibson E, Giganti F, Hu Y, et al (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. IEEE Transactions on Medical Imaging 37(8):1822–1834PubMedPubMedCentralCrossRef
162.
go back to reference Clark K, Vendt B, Smith K, et al (2013) The cancer imaging archive (tcia): Maintaining and operating a public information repository. Journal of Digital Imaging 26(6):1045–1057PubMedPubMedCentralCrossRef Clark K, Vendt B, Smith K, et al (2013) The cancer imaging archive (tcia): Maintaining and operating a public information repository. Journal of Digital Imaging 26(6):1045–1057PubMedPubMedCentralCrossRef
163.
go back to reference Landman B, Xu Z, Igelsias JE, et al (2015) 2015 miccai multi-atlas labeling beyond the cranial vault - workshop and challenge. MICCAI Landman B, Xu Z, Igelsias JE, et al (2015) 2015 miccai multi-atlas labeling beyond the cranial vault - workshop and challenge. MICCAI
164.
go back to reference Yan K, Wang X, Lu L, et al (2018) DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging 5(3):1 – 11CrossRef Yan K, Wang X, Lu L, et al (2018) DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of Medical Imaging 5(3):1 – 11CrossRef
165.
go back to reference De Luca V, Banerjee J, Hallack A, et al (2018) Evaluation of 2d and 3d ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Medical Physics 45(11):4986–5003PubMedCrossRef De Luca V, Banerjee J, Hallack A, et al (2018) Evaluation of 2d and 3d ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Medical Physics 45(11):4986–5003PubMedCrossRef
166.
go back to reference Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 68(2):723–750PubMedCrossRef Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology 68(2):723–750PubMedCrossRef
167.
go back to reference Yopp AC, Mansour JC, Beg MS, et al (2014) Establishment of a multidisciplinary hepatocellular carcinoma clinic is associated with improved clinical outcome. Annals of Surgical Oncology 21(4):1287–1295PubMedCrossRef Yopp AC, Mansour JC, Beg MS, et al (2014) Establishment of a multidisciplinary hepatocellular carcinoma clinic is associated with improved clinical outcome. Annals of Surgical Oncology 21(4):1287–1295PubMedCrossRef
Metadata
Title
Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review
Authors
Sonit Singh
Shakira Hoque
Amany Zekry
Arcot Sowmya
Publication date
01-12-2023
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 1/2023
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-023-01968-7

Other articles of this Issue 1/2023

Journal of Medical Systems 1/2023 Go to the issue