Skip to main content
Top
Published in: Journal of Medical Systems 5/2011

01-10-2011 | Original Paper

Thermal Shock Resistance of Skin Tissue

Authors: ZhiBin Fan, Xiao Zhai, LiHong Zhou, Feng Xu, TianJian Lu

Published in: Journal of Medical Systems | Issue 5/2011

Login to get access

Abstract

Understanding the mechanisms of skin behavior under thermal shock is crucial for medical treatments. However, no reasonable criteria are available for the maximum thermal loadings that skin tissue can survive. To address this, in this paper we analyzed thermal and neural behaviors of skin tissue exposed to thermal loadings by introducing the thermal shock resistance (a parameter widely used for engineering materials) of skin for the first time. Skin thermal shock resistance was analyzed according to two distinct criteria: (1) maximum local temperature at epidermis-dermis (ED) interface defined as the thermal threshold of skin thermal pain; (2) maximum thermal damage at ED interface defined as the first degree burn where irreversible skin damage occurs. Numerical simulation was performed and the results show that the thermal shock resistance of skin tissue depends on the Biot number (which characterizes the features of thermal shock). These results indicate that skin thermal shock resistance can be used as an efficient tool to predict thermal damage (e.g., burn) and the corresponding pain level induced by noxious thermal loadings (e.g., clinical thermal treatments).
Literature
1.
2.
go back to reference Stewart, D. A., Gowrishankar, T. R., and Weaver, J. C., Skin heating and injury by prolonged millimeter-wave exposure: theory based on a skin model coupled to a whole body model and local biochemical release from cells at supraphysiologic temperatures. IEEE Trans. Plasma. Sci. 34:1480–1493, 2006.CrossRef Stewart, D. A., Gowrishankar, T. R., and Weaver, J. C., Skin heating and injury by prolonged millimeter-wave exposure: theory based on a skin model coupled to a whole body model and local biochemical release from cells at supraphysiologic temperatures. IEEE Trans. Plasma. Sci. 34:1480–1493, 2006.CrossRef
3.
go back to reference Stec, B., Dobrowolski, A., and Susek, W. Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 603–606. Stec, B., Dobrowolski, A., and Susek, W. Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 603–606.
4.
go back to reference Weiss, R. A., Weiss, M. A., Munavalli, G., and Beasley, K. L., Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments. J. Drugs Dermatol. 5:707–712, 2006. Weiss, R. A., Weiss, M. A., Munavalli, G., and Beasley, K. L., Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments. J. Drugs Dermatol. 5:707–712, 2006.
5.
go back to reference Sadick, N. S., and Shaoul, J., Hair removal using a combination of conducted radiofrequency and optical energies–an 18-month follow-up. J. Cosmet. Laser Ther. 6:21–26, 2004.CrossRef Sadick, N. S., and Shaoul, J., Hair removal using a combination of conducted radiofrequency and optical energies–an 18-month follow-up. J. Cosmet. Laser Ther. 6:21–26, 2004.CrossRef
6.
go back to reference Goldberg, D. J., Laser- and light-based hair removal: an update. Expert Rev. Med. Devices 4:253–260, 2007.CrossRef Goldberg, D. J., Laser- and light-based hair removal: an update. Expert Rev. Med. Devices 4:253–260, 2007.CrossRef
7.
go back to reference Bernstein, E. F., The new-generation, high-energy, 595 nm, long pulse-duration, pulsed-dye laser effectively removes spider veins of the lower extremity. Lasers Surg. Med. 39:218–224, 2007.CrossRef Bernstein, E. F., The new-generation, high-energy, 595 nm, long pulse-duration, pulsed-dye laser effectively removes spider veins of the lower extremity. Lasers Surg. Med. 39:218–224, 2007.CrossRef
8.
go back to reference Tay, Y. K., Kwok, C., and Tan, E., Non-ablative 1, 450-nm diode laser treatment of striae distensae. Lasers Surg. Med. 38:196–199, 2006.CrossRef Tay, Y. K., Kwok, C., and Tan, E., Non-ablative 1, 450-nm diode laser treatment of striae distensae. Lasers Surg. Med. 38:196–199, 2006.CrossRef
9.
go back to reference Pearse, H. E., Problems in the experimental study of flash burns. Science 110:444–444, 1949. Pearse, H. E., Problems in the experimental study of flash burns. Science 110:444–444, 1949.
10.
go back to reference Pearse, H. E., Payne, J. T., and Hogg, L., The experimental study of flash-burns. Ann. Surg. 130:774–789, 1949.CrossRef Pearse, H. E., Payne, J. T., and Hogg, L., The experimental study of flash-burns. Ann. Surg. 130:774–789, 1949.CrossRef
11.
go back to reference Torvi, D. A., and Dale, J. D., A finite-element model of skin subjected to a flash fire. J. Biomech. Eng.-T. Asme 116:250–255, 1994.CrossRef Torvi, D. A., and Dale, J. D., A finite-element model of skin subjected to a flash fire. J. Biomech. Eng.-T. Asme 116:250–255, 1994.CrossRef
12.
go back to reference Maichrzak, E., Mochnacki, B., and Jasinski, M. Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire. Computational Fluid and Solid Mechanics 2003, Vols 1 and 2, Proceedings, 1766–1770 2443 (2003). Maichrzak, E., Mochnacki, B., and Jasinski, M. Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire. Computational Fluid and Solid Mechanics 2003, Vols 1 and 2, Proceedings, 1766–1770 2443 (2003).
13.
go back to reference Wu, Y. C., Material properties criteria for thermal safety. J. Mater. 7:573–579, 1972. Wu, Y. C., Material properties criteria for thermal safety. J. Mater. 7:573–579, 1972.
14.
go back to reference Subramanian, B., and JC, C., Safe touch temperatures for hot plates. J. Biomech. Eng.-T. Asme 120:727–736, 1998.CrossRef Subramanian, B., and JC, C., Safe touch temperatures for hot plates. J. Biomech. Eng.-T. Asme 120:727–736, 1998.CrossRef
15.
go back to reference Lu, T. J., and Fleck, N. A., The thermal shock resistance of solids. Acta Mater. 46:4755–4768, 1998.CrossRef Lu, T. J., and Fleck, N. A., The thermal shock resistance of solids. Acta Mater. 46:4755–4768, 1998.CrossRef
16.
17.
go back to reference Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1:93–122, 1948. Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1:93–122, 1948.
18.
go back to reference Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Skin biothermomechanics for medical treatments. J. Mech. Behav. Biomed. Mater. 1:172–187, 2008. doi:S1751-6161(07)00030-6. [pii] 10.1016/j.jmbbm.2007.09.001.CrossRef Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Skin biothermomechanics for medical treatments. J. Mech. Behav. Biomed. Mater. 1:172–187, 2008. doi:S1751-6161(07)00030-6. [pii] 10.1016/j.jmbbm.2007.09.001.CrossRef
19.
go back to reference Xu, F., Seffen, K. A., and Lu, T. J., Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Tran. 51:2237–2259, 2008.CrossRefMATH Xu, F., Seffen, K. A., and Lu, T. J., Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Tran. 51:2237–2259, 2008.CrossRefMATH
20.
go back to reference Henriques, F., Jr., and Moritz, A., Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation*. Am. J. Pathol. 23:530, 1947. Henriques, F., Jr., and Moritz, A., Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation*. Am. J. Pathol. 23:530, 1947.
21.
go back to reference Schulz, J. T., III, Tompkins, R. G., and Burke, J. F., Artificial skin. Annu. Rev. Med. 51:231–244, 2000.CrossRef Schulz, J. T., III, Tompkins, R. G., and Burke, J. F., Artificial skin. Annu. Rev. Med. 51:231–244, 2000.CrossRef
22.
go back to reference Henriques, F. C., Study of thermal injuries V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. 43:489–502, 1947. Henriques, F. C., Study of thermal injuries V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. 43:489–502, 1947.
23.
go back to reference Xu, F., Wen, T., Lu, T. J., and Seffen, K. A. Modeling of nociceptor transduction in skin thermal pain sensation. J. Biomech. Eng. 130, 2008. Xu, F., Wen, T., Lu, T. J., and Seffen, K. A. Modeling of nociceptor transduction in skin thermal pain sensation. J. Biomech. Eng. 130, 2008.
24.
go back to reference Patapoutian, A., Peier, A. M., Story, G. M., and Viswanath, V., Thermo TRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4:529–539, 2003.CrossRef Patapoutian, A., Peier, A. M., Story, G. M., and Viswanath, V., Thermo TRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4:529–539, 2003.CrossRef
25.
go back to reference Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modeling of skin thermal pain: a preliminary study. J. Appl. Math. Comput. 205:37–46, 2008.CrossRefMATH Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modeling of skin thermal pain: a preliminary study. J. Appl. Math. Comput. 205:37–46, 2008.CrossRefMATH
26.
go back to reference Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transduction in skin thermal pain sensation. J. Biomech. Eng. 130:1–13, 2008.CrossRef Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transduction in skin thermal pain sensation. J. Biomech. Eng. 130:1–13, 2008.CrossRef
27.
go back to reference Xu, F., Lu, T. J., and Seffen, K. A., Skin thermal pain modeling. a holistic method. J. Therm. Biol. 33:223–237, 2008.CrossRef Xu, F., Lu, T. J., and Seffen, K. A., Skin thermal pain modeling. a holistic method. J. Therm. Biol. 33:223–237, 2008.CrossRef
28.
go back to reference Arendt-Nielsen, L., and Chen, A. C. N., Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiologie Clinique/Clinical Neurophysiology 33:259–268, 2003.CrossRef Arendt-Nielsen, L., and Chen, A. C. N., Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiologie Clinique/Clinical Neurophysiology 33:259–268, 2003.CrossRef
Metadata
Title
Thermal Shock Resistance of Skin Tissue
Authors
ZhiBin Fan
Xiao Zhai
LiHong Zhou
Feng Xu
TianJian Lu
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 5/2011
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9503-2

Other articles of this Issue 5/2011

Journal of Medical Systems 5/2011 Go to the issue