Skip to main content
Top
Published in: Journal of Medical Systems 5/2011

01-10-2011 | Original Paper

Direct Numerical Simulation of Single Leukocyte Deformation in Microchannel Flow for Disease Diagnosis

Authors: Z. Y. Luo, F. Xu, T. J. Lu, B. F. Bai

Published in: Journal of Medical Systems | Issue 5/2011

Login to get access

Abstract

To better understand the physical mechanism of leukocyte separation via microfluidics, a level set method was employed to analyze the coupled deformation-flow of individual leukocytes in microfluidic parabolic shear blood flow. The results show that: (1) Weber number and viscosity ratio have great effects on the deformation of single leukocyte, (2) difference between the deformation and motion behavior of different subtypes of leukocytes (i.e., granulocytes, lymphocytes, monocytes) was observed, and (3) the existence of a second leukocyte significantly changes the leukocyte deformation and motion. These results shed light on the understanding of the motion and deformation of leukocytes in microchannel flow and provide a theoretical foundation for separating lymphocytes via microfluidics.
Literature
1.
go back to reference Alyassin, M. A., Moon, S., Keles, H. O., et al., Rapid automated cell quantification on hiv microfluidic devices. Lab Chip 9:3364–3369, 2009.CrossRef Alyassin, M. A., Moon, S., Keles, H. O., et al., Rapid automated cell quantification on hiv microfluidic devices. Lab Chip 9:3364–3369, 2009.CrossRef
2.
go back to reference Moon, S., Keles, H. O., Ozcan, A., et al., Integrating microfluidics and lensless imaging for point-of-care testing. Biosens. Bioelectron. 24:3208–3214, 2009.CrossRef Moon, S., Keles, H. O., Ozcan, A., et al., Integrating microfluidics and lensless imaging for point-of-care testing. Biosens. Bioelectron. 24:3208–3214, 2009.CrossRef
3.
go back to reference Phillips, A. N., Lee, C. A., Elford, J., et al., Serial lymphocyte-cd4 counts and development of aids. Lancet 337:389–392, 1991.CrossRef Phillips, A. N., Lee, C. A., Elford, J., et al., Serial lymphocyte-cd4 counts and development of aids. Lancet 337:389–392, 1991.CrossRef
4.
go back to reference Kim, Y., Moon, S., Kuritzkes, D. R. et al, Quantum dot-based hiv capture and imaging in a microfluidic channel. Biosens. Bioelectron. 25:253–258, 2009. Kim, Y., Moon, S., Kuritzkes, D. R. et al, Quantum dot-based hiv capture and imaging in a microfluidic channel. Biosens. Bioelectron. 25:253–258, 2009.
5.
go back to reference Toner, M., and Irimia, D., Blood on a chip. Annu. Rev. Biomed. Eng. 7:77–103, 2005.CrossRef Toner, M., and Irimia, D., Blood on a chip. Annu. Rev. Biomed. Eng. 7:77–103, 2005.CrossRef
6.
go back to reference Huh, D., Gu, W., Kamotani, Y., et al., Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26:R73–R98, 2005.CrossRef Huh, D., Gu, W., Kamotani, Y., et al., Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26:R73–R98, 2005.CrossRef
7.
go back to reference Cheng, X. H., Irimia, D., Dixon, M., et al., A microfluidic device for practical label-free cd4+t cell counting of hiv-infected subjects. Lab Chip 7:170–178, 2007.CrossRef Cheng, X. H., Irimia, D., Dixon, M., et al., A microfluidic device for practical label-free cd4+t cell counting of hiv-infected subjects. Lab Chip 7:170–178, 2007.CrossRef
8.
go back to reference Cheng, X., Liu, Y. S., Irimia, D., et al., Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755, 2007.CrossRef Cheng, X., Liu, Y. S., Irimia, D., et al., Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755, 2007.CrossRef
9.
10.
go back to reference Pappu, V., Doddi, S. K., and Bagchi, P., A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J. Theor. Biol. 254:483–498, 2008.CrossRef Pappu, V., Doddi, S. K., and Bagchi, P., A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J. Theor. Biol. 254:483–498, 2008.CrossRef
11.
go back to reference Jadhav, S., Eggleton, C. D., and Konstantopoulos, K., A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys. J. 88:96–104, 2005.CrossRef Jadhav, S., Eggleton, C. D., and Konstantopoulos, K., A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys. J. 88:96–104, 2005.CrossRef
12.
go back to reference N’Dri, N. A., Shyy, W., and Tran-Soy-Tay, R., Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85:2273–2286, 2003.CrossRef N’Dri, N. A., Shyy, W., and Tran-Soy-Tay, R., Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85:2273–2286, 2003.CrossRef
13.
go back to reference Khismatullin, D. B., and Truskey, G. A., A 3d numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc. Res. 68:188–202, 2004.CrossRef Khismatullin, D. B., and Truskey, G. A., A 3d numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc. Res. 68:188–202, 2004.CrossRef
14.
go back to reference Liu, X. H., and Wang, X., The deformation of an adherent leukocyte under steady shear flow: A numerical study. J. Biomech. 37:1079–1085, 2004.CrossRef Liu, X. H., and Wang, X., The deformation of an adherent leukocyte under steady shear flow: A numerical study. J. Biomech. 37:1079–1085, 2004.CrossRef
15.
go back to reference Pappu, V., and Bagchi, P., 3d computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput. Biol. Med. 38:738–753, 2008.CrossRef Pappu, V., and Bagchi, P., 3d computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput. Biol. Med. 38:738–753, 2008.CrossRef
16.
go back to reference Cheng, D., and Xiao, X. L., Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability. J. Biomech. 33:35–43, 2000.CrossRef Cheng, D., and Xiao, X. L., Biomechanics of cell rolling: Shear flow, cell-surface adhesion, and cell deformability. J. Biomech. 33:35–43, 2000.CrossRef
17.
go back to reference Cheng, D., Jian, C., Struble, E. J., et al., Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann. Biomed. Eng. 27:298–312, 1999.CrossRef Cheng, D., Jian, C., Struble, E. J., et al., Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann. Biomed. Eng. 27:298–312, 1999.CrossRef
18.
go back to reference Doddi, S. K., and Bagchi, P., Lateral migration of a capsule in a plane poiseuille flow in a channel. Int. J. Multiph. Flow 34:966–986, 2008.CrossRef Doddi, S. K., and Bagchi, P., Lateral migration of a capsule in a plane poiseuille flow in a channel. Int. J. Multiph. Flow 34:966–986, 2008.CrossRef
19.
go back to reference Griggs, A. J., Zinchenko, A. Z., and Davis, R. H., Low-reynolds-number motion of a deformable drop between two parallel plane walls. Int. J. Multiph. Flow 33:182–206, 2007.CrossRef Griggs, A. J., Zinchenko, A. Z., and Davis, R. H., Low-reynolds-number motion of a deformable drop between two parallel plane walls. Int. J. Multiph. Flow 33:182–206, 2007.CrossRef
20.
go back to reference Chang, Y. C., Hou, T. Y., Merriman, B., et al., A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124:449–464, 1996.CrossRefMATHMathSciNet Chang, Y. C., Hou, T. Y., Merriman, B., et al., A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124:449–464, 1996.CrossRefMATHMathSciNet
21.
go back to reference Luo, X. Y., Ni, M. J., Ying, A., et al., Numerical modeling for multiphase incompressible flow with phase change. Numer. Heat Transf., B Fundam. 48:425–444, 2005.CrossRef Luo, X. Y., Ni, M. J., Ying, A., et al., Numerical modeling for multiphase incompressible flow with phase change. Numer. Heat Transf., B Fundam. 48:425–444, 2005.CrossRef
22.
go back to reference Ni, M. J., Komori, S., and Morley, N. B., Direct simulation of falling droplet in a closed channel. Int. J. Heat Mass Transfer 49:366–376, 2006.CrossRefMATH Ni, M. J., Komori, S., and Morley, N. B., Direct simulation of falling droplet in a closed channel. Int. J. Heat Mass Transfer 49:366–376, 2006.CrossRefMATH
23.
go back to reference Ni, M. J., Abdou, M., and Komori, S., A variable-density projection method for interfacial flows. Numer. Heat Transf., B Fundam. 44:553–574, 2003.CrossRef Ni, M. J., Abdou, M., and Komori, S., A variable-density projection method for interfacial flows. Numer. Heat Transf., B Fundam. 44:553–574, 2003.CrossRef
24.
go back to reference Ni, M. J., Komori, S., and Morley, N., Projection methods for the calculation of incompressible unsteady flows. Numer. Heat Transf., B Fundam. 44:533–551, 2003.CrossRef Ni, M. J., Komori, S., and Morley, N., Projection methods for the calculation of incompressible unsteady flows. Numer. Heat Transf., B Fundam. 44:533–551, 2003.CrossRef
25.
go back to reference Jin, Q., Verdier, C., Singh, P., et al., Migration and deformation of leukocytes in pressure driven flows. Mech. Res. Commun. 34:411–422, 2007.CrossRefMATHMathSciNet Jin, Q., Verdier, C., Singh, P., et al., Migration and deformation of leukocytes in pressure driven flows. Mech. Res. Commun. 34:411–422, 2007.CrossRefMATHMathSciNet
26.
go back to reference Yeung, A., and Evans, E., Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56:139–149, 1989.CrossRef Yeung, A., and Evans, E., Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56:139–149, 1989.CrossRef
27.
go back to reference Lim, C. T., Zhou, E. H., and Quek, S. T., Mechanical models for living cells—a review. J. Biomech. 39:195–216, 2006.CrossRef Lim, C. T., Zhou, E. H., and Quek, S. T., Mechanical models for living cells—a review. J. Biomech. 39:195–216, 2006.CrossRef
28.
go back to reference Marella, S. V., and Udaykumar, H. S., Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids 16:244–264, 2004.CrossRef Marella, S. V., and Udaykumar, H. S., Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys. Fluids 16:244–264, 2004.CrossRef
29.
30.
go back to reference Zhou, C. F., Yue, P. T., and Feng, J. J., Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models. Ann. Biomed. Eng. 35:766–780, 2007.CrossRef Zhou, C. F., Yue, P. T., and Feng, J. J., Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models. Ann. Biomed. Eng. 35:766–780, 2007.CrossRef
31.
go back to reference Tran-Son-Tay, R., Kan, H. C., Udaykumar, H. S., et al., Rheological modelling of leukocytes. Med. Biol. Eng. Comput. 36:246–250, 1998.CrossRef Tran-Son-Tay, R., Kan, H. C., Udaykumar, H. S., et al., Rheological modelling of leukocytes. Med. Biol. Eng. Comput. 36:246–250, 1998.CrossRef
32.
go back to reference Yang, J., Huang, Y., Wang, X. B., et al., Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78:2680–2689, 2000.CrossRef Yang, J., Huang, Y., Wang, X. B., et al., Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78:2680–2689, 2000.CrossRef
33.
go back to reference Osher, S., and Sethian, J. A., Fronts propagating with curvature-dependent speed—algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79:12–49, 1988.CrossRefMATHMathSciNet Osher, S., and Sethian, J. A., Fronts propagating with curvature-dependent speed—algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79:12–49, 1988.CrossRefMATHMathSciNet
34.
go back to reference Sussman, M., Smereka, P., and Osher, S., A level set approach for computing solutions to incompressible 2-phase flow. J. Comput. Phys. 114:146–159, 1994.CrossRefMATH Sussman, M., Smereka, P., and Osher, S., A level set approach for computing solutions to incompressible 2-phase flow. J. Comput. Phys. 114:146–159, 1994.CrossRefMATH
35.
go back to reference Brackbill, J. U., Kothe, D. B., and Zemach, C., A continuum method for modeling surface-tension. J. Comput. Phys. 100:335–354, 1992.CrossRefMATHMathSciNet Brackbill, J. U., Kothe, D. B., and Zemach, C., A continuum method for modeling surface-tension. J. Comput. Phys. 100:335–354, 1992.CrossRefMATHMathSciNet
36.
go back to reference Ramanujan, S., and Pozrikidis, C., Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. J. Fluid Mech. 361:117–143, 1998.CrossRefMATHMathSciNet Ramanujan, S., and Pozrikidis, C., Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. J. Fluid Mech. 361:117–143, 1998.CrossRefMATHMathSciNet
37.
go back to reference Lac, E., and Barthes-Biesel, D., Deformation of a capsule in simple shear flow: Effect of membrane prestress. Phys. Fluids 17:8, 2005.CrossRef Lac, E., and Barthes-Biesel, D., Deformation of a capsule in simple shear flow: Effect of membrane prestress. Phys. Fluids 17:8, 2005.CrossRef
Metadata
Title
Direct Numerical Simulation of Single Leukocyte Deformation in Microchannel Flow for Disease Diagnosis
Authors
Z. Y. Luo
F. Xu
T. J. Lu
B. F. Bai
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 5/2011
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9502-3

Other articles of this Issue 5/2011

Journal of Medical Systems 5/2011 Go to the issue