Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2022

Open Access 14-02-2022 | Pediatric Intensive Care | Original Research

Comparing ventilation modes by electrical impedance segmentography in ventilated children

Authors: Jennifer Bettina Brandt, Alex Mahlknecht, Tobias Werther, Roman Ullrich, Michael Hermon

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2022

Login to get access

Abstract

Electrical impedance segmentography offers a new radiation-free possibility of continuous bedside ventilation monitoring. The aim of this study was to evaluate the efficacy and reproducibility of this bedside tool by comparing synchronized intermittent mandatory ventilation (SIMV) with neurally adjusted ventilatory assist (NAVA) in critically-ill children. In this prospective randomized case–control crossover trial in a pediatric intensive care unit of a tertiary center, including eight mechanically-ventilated children, four sequences of two different ventilation modes were consecutively applied. All children were randomized into two groups; starting on NAVA or SIMV. During ventilation, electric impedance segmentography measurements were recorded. The relative difference of vertical impedance between both ventilatory modes was measured (median 0.52, IQR 0–0.87). These differences in left apical lung segments were present during the first (median 0.58, IQR 0–0.89, p = 0.04) and second crossover (median 0.50, IQR 0–0.88, p = 0.05) as well as across total impedance (0.52 IQR 0–0.87; p = 0.002). During NAVA children showed a shift of impedance towards caudal lung segments, compared to SIMV. Electrical impedance segmentography enables dynamic monitoring of transthoracic impedance. The immediate benefit of personalized ventilatory strategies can be seen when using this simple-to-apply bedside tool for measuring lung impedance.
Literature
1.
go back to reference Mistri S, Dhochak N, Jana M, Jat KR, Sankar J, Kabra SK, et al. Diaphragmatic atrophy and dysfunction in critically ill mechanically ventilated children. Pediatr Pulmonol. 2020;55(12):3457–64.CrossRefPubMed Mistri S, Dhochak N, Jana M, Jat KR, Sankar J, Kabra SK, et al. Diaphragmatic atrophy and dysfunction in critically ill mechanically ventilated children. Pediatr Pulmonol. 2020;55(12):3457–64.CrossRefPubMed
2.
go back to reference Johnson RW, Ng KWP, Dietz AR, Hartman ME, Baty JD, Hasan N, et al. Muscle atrophy in mechanically-ventilated critically ill children. PLoS ONE. 2018;13(12):e0207720.CrossRefPubMedPubMedCentral Johnson RW, Ng KWP, Dietz AR, Hartman ME, Baty JD, Hasan N, et al. Muscle atrophy in mechanically-ventilated critically ill children. PLoS ONE. 2018;13(12):e0207720.CrossRefPubMedPubMedCentral
3.
go back to reference Glau CL, Conlon TW, Himebauch AS, Yehya N, Weiss SL, Berg RA, et al. Progressive diaphragm atrophy in pediatric acute respiratory failure. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2018;19(5):406–11. Glau CL, Conlon TW, Himebauch AS, Yehya N, Weiss SL, Berg RA, et al. Progressive diaphragm atrophy in pediatric acute respiratory failure. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2018;19(5):406–11.
4.
go back to reference Kneyber MCJ, de Luca D, Calderini E, Jarreau P-H, Javouhey E, Lopez-Herce J, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764–80.CrossRefPubMedPubMedCentral Kneyber MCJ, de Luca D, Calderini E, Jarreau P-H, Javouhey E, Lopez-Herce J, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764–80.CrossRefPubMedPubMedCentral
5.
go back to reference Solberg MT, Solevåg AL, Clarke S. Optimal conventional mechanical ventilation in full-term newborns: a systematic review. Adv Neonatal Care. 2018;18(6):451–61.CrossRefPubMed Solberg MT, Solevåg AL, Clarke S. Optimal conventional mechanical ventilation in full-term newborns: a systematic review. Adv Neonatal Care. 2018;18(6):451–61.CrossRefPubMed
6.
go back to reference Wood SM, Thurman TL, Holt SJ, Bai S, Heulitt MJ, Courtney SE. Effect of ventilator mode on patient-ventilator synchrony and work of breathing in neonatal pigs. Pediatr Pulmonol. 2017;52(7):922–8.CrossRefPubMed Wood SM, Thurman TL, Holt SJ, Bai S, Heulitt MJ, Courtney SE. Effect of ventilator mode on patient-ventilator synchrony and work of breathing in neonatal pigs. Pediatr Pulmonol. 2017;52(7):922–8.CrossRefPubMed
7.
go back to reference Baez Hernandez N, Milad A, Li Y, Van Bergen AH. Utilization of neurally adjusted ventilatory assist (NAVA) mode in infants and children undergoing congenital heart surgery: A retrospective review. Pediatr Cardiol. 2019;40(3):563–9.CrossRefPubMed Baez Hernandez N, Milad A, Li Y, Van Bergen AH. Utilization of neurally adjusted ventilatory assist (NAVA) mode in infants and children undergoing congenital heart surgery: A retrospective review. Pediatr Cardiol. 2019;40(3):563–9.CrossRefPubMed
8.
go back to reference Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874–83.PubMed Beck J, Emeriaud G, Liu Y, Sinderby C. Neurally-adjusted ventilatory assist (NAVA) in children: a systematic review. Minerva Anestesiol. 2016;82(8):874–83.PubMed
9.
go back to reference Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care–a randomized controlled trial. Pediatr Pulmonol. 2015;50(1):55–62.CrossRefPubMed Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care–a randomized controlled trial. Pediatr Pulmonol. 2015;50(1):55–62.CrossRefPubMed
10.
go back to reference Lee J, Kim H-S, Jung YH, Choi CW, Jun YH. Neurally adjusted ventilatory assist for infants under prolonged ventilation. Pediatr Int Off J Jpn Pediatr Soc. 2017;59(5):540–4.CrossRef Lee J, Kim H-S, Jung YH, Choi CW, Jun YH. Neurally adjusted ventilatory assist for infants under prolonged ventilation. Pediatr Int Off J Jpn Pediatr Soc. 2017;59(5):540–4.CrossRef
11.
go back to reference Sood SB, Mushtaq N, Brown K, Littlefield V, Barton RP. Neurally adjusted ventilatory assist is associated with greater initial extubation success in postoperative congenital heart disease patients when compared to conventional mechanical ventilation. J Pediatr Intensive Care. 2018;7(3):147–58.CrossRefPubMedPubMedCentral Sood SB, Mushtaq N, Brown K, Littlefield V, Barton RP. Neurally adjusted ventilatory assist is associated with greater initial extubation success in postoperative congenital heart disease patients when compared to conventional mechanical ventilation. J Pediatr Intensive Care. 2018;7(3):147–58.CrossRefPubMedPubMedCentral
12.
go back to reference Corsini I, Parri N, Ficial B, Dani C. Lung ultrasound in the neonatal intensive care unit: Review of the literature and future perspectives. Pediatr Pulmonol. 2020;55(7):1550–62.CrossRefPubMed Corsini I, Parri N, Ficial B, Dani C. Lung ultrasound in the neonatal intensive care unit: Review of the literature and future perspectives. Pediatr Pulmonol. 2020;55(7):1550–62.CrossRefPubMed
13.
go back to reference Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93.CrossRefPubMed Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93.CrossRefPubMed
14.
go back to reference Reiterer F, Vallant J, Urlesberger B. Electrical impedance segmentography: A promising tool for respiratory monitoring? J Neonatal-Perinat Med. 2020;13:489–94.CrossRef Reiterer F, Vallant J, Urlesberger B. Electrical impedance segmentography: A promising tool for respiratory monitoring? J Neonatal-Perinat Med. 2020;13:489–94.CrossRef
15.
go back to reference Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Changes in lung volume and ventilation during lung recruitment in high-frequency ventilated preterm infants with respiratory distress syndrome. J Pediatr. 2011;159(2):199-205.e2.CrossRefPubMed Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Changes in lung volume and ventilation during lung recruitment in high-frequency ventilated preterm infants with respiratory distress syndrome. J Pediatr. 2011;159(2):199-205.e2.CrossRefPubMed
16.
go back to reference Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants–2013 update. Neonatology. 2013;103(4):353–68.CrossRefPubMed Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants–2013 update. Neonatology. 2013;103(4):353–68.CrossRefPubMed
17.
go back to reference Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014;35(6):990–7.CrossRefPubMed Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014;35(6):990–7.CrossRefPubMed
18.
go back to reference Reiterer F, Sivieri E, Abbasi S. Evaluation of bedside pulmonary function in the neonate: From the past to the future. Pediatr Pulmonol. 2015;50(10):1039–50.CrossRefPubMed Reiterer F, Sivieri E, Abbasi S. Evaluation of bedside pulmonary function in the neonate: From the past to the future. Pediatr Pulmonol. 2015;50(10):1039–50.CrossRefPubMed
19.
go back to reference Liet J-M, Barrière F, Gaillard-Le Roux B, Bourgoin P, Legrand A, Joram N. Physiological effects of invasive ventilation with neurally adjusted ventilatory assist (NAVA) in a crossover study. BMC Pediatr. 2016;16(1):180.CrossRefPubMedPubMedCentral Liet J-M, Barrière F, Gaillard-Le Roux B, Bourgoin P, Legrand A, Joram N. Physiological effects of invasive ventilation with neurally adjusted ventilatory assist (NAVA) in a crossover study. BMC Pediatr. 2016;16(1):180.CrossRefPubMedPubMedCentral
20.
go back to reference Lee J, Kim H-S, Sohn JA, Lee JA, Choi CW, Kim E-K, et al. Randomized crossover study of neurally adjusted ventilatory assist in preterm infants. J Pediatr. 2012;161(5):808–13.CrossRefPubMed Lee J, Kim H-S, Sohn JA, Lee JA, Choi CW, Kim E-K, et al. Randomized crossover study of neurally adjusted ventilatory assist in preterm infants. J Pediatr. 2012;161(5):808–13.CrossRefPubMed
21.
go back to reference Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34(11):2010–8.CrossRefPubMed Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34(11):2010–8.CrossRefPubMed
22.
go back to reference Karikari S, Rausa J, Flores S, Loomba RS. Neurally adjusted ventilatory assist versus conventional ventilation in the pediatric population: Are there benefits? Pediatr Pulmonol. 2019;54(9):1374–81.CrossRefPubMed Karikari S, Rausa J, Flores S, Loomba RS. Neurally adjusted ventilatory assist versus conventional ventilation in the pediatric population: Are there benefits? Pediatr Pulmonol. 2019;54(9):1374–81.CrossRefPubMed
23.
go back to reference Tomicic V, Cornejo R. Lung monitoring with electrical impedance tomography: technical considerations and clinical applications. J Thorac Dis. 2019;11(7):3122–35.CrossRefPubMedPubMedCentral Tomicic V, Cornejo R. Lung monitoring with electrical impedance tomography: technical considerations and clinical applications. J Thorac Dis. 2019;11(7):3122–35.CrossRefPubMedPubMedCentral
24.
go back to reference Lehmann S, Leonhardt S, Ngo C, Bergmann L, Schrading S, Heimann K, et al. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury. Clin Respir J. 2018;12(1):68–75.CrossRefPubMed Lehmann S, Leonhardt S, Ngo C, Bergmann L, Schrading S, Heimann K, et al. Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury. Clin Respir J. 2018;12(1):68–75.CrossRefPubMed
25.
go back to reference Bengtsson JA, Edberg KE. Neurally adjusted ventilatory assist in children: an observational study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2010;11(2):253–7. Bengtsson JA, Edberg KE. Neurally adjusted ventilatory assist in children: an observational study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2010;11(2):253–7.
26.
go back to reference Durlak W, Klimek M, Kwinta P. Regional lung ventilation pattern in preschool children with bronchopulmonary dysplasia is modified by bronchodilator response. Pediatr Pulmonol. 2017;52(3):353–9.CrossRefPubMed Durlak W, Klimek M, Kwinta P. Regional lung ventilation pattern in preschool children with bronchopulmonary dysplasia is modified by bronchodilator response. Pediatr Pulmonol. 2017;52(3):353–9.CrossRefPubMed
27.
go back to reference Inany HS, Rettig JS, Smallwood CD, Arnold JH, Walsh BK. Distribution of ventilation measured by electrical impedance tomography in critically Ill children. Respir Care. 2020;65(5):590–5.CrossRefPubMed Inany HS, Rettig JS, Smallwood CD, Arnold JH, Walsh BK. Distribution of ventilation measured by electrical impedance tomography in critically Ill children. Respir Care. 2020;65(5):590–5.CrossRefPubMed
28.
go back to reference Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G. Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci. 1999;20(873):493–505.CrossRef Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G. Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci. 1999;20(873):493–505.CrossRef
29.
go back to reference Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I. Body and head position effects on regional lung ventilation in infants: An electrical impedance tomography study. Intensive Care Med. 2006;32(9):1392–8.CrossRefPubMed Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I. Body and head position effects on regional lung ventilation in infants: An electrical impedance tomography study. Intensive Care Med. 2006;32(9):1392–8.CrossRefPubMed
Metadata
Title
Comparing ventilation modes by electrical impedance segmentography in ventilated children
Authors
Jennifer Bettina Brandt
Alex Mahlknecht
Tobias Werther
Roman Ullrich
Michael Hermon
Publication date
14-02-2022
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2022
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-022-00828-y

Other articles of this Issue 6/2022

Journal of Clinical Monitoring and Computing 6/2022 Go to the issue