Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 1/2019

Open Access 01-02-2019 | Original Research

Real-time, spectral analysis of the arterial pressure waveform using a wirelessly-connected, tablet computer: a pilot study

Author: David Andrew Pybus

Published in: Journal of Clinical Monitoring and Computing | Issue 1/2019

Login to get access

Abstract

Spectral analysis of the arterial pressure waveform, using specialized hardware, has been used for the retrospective calculation of the ‘Spectral Peak Ratio’ (SPeR) of the respiratory and cardiac arterial spectral peaks. The metric can quantify the cardiovascular response to volume loading by analysing the effect of changing tidal volume (indexed to body weight) (VTI) on pulse pressure variability. In this pilot study, the feasibility of real-time SPeR calculation, using a mobile computer which was wirelessly connected to the patient monitor, was evaluated by examining the determinants of SPeR in 60 cardiac-surgical patients. In 30 patients undergoing aortic valve replacement (AVR), graded cyclical changes in ventricular loading were induced by increasing VTI over 2 min, while performing spectral analysis at 1 Hz, before and after AVR. A strong, linear correlation between SPeR and VTI was found and the slope of the regression line (β) changed significantly after AVR. The change in β correlated with the width of the preoperative vena contracta. In another 30 patients, SPeR at constant VTI was calculated at 1 Hz during passive leg raising. β fell significantly on leg raising. The mean arterial pressure change during the manoeuvre was linearly related to the change in β. Real-time spectral analysis of the arterial waveform was easily accomplished. The regression of SPeR on VTI was linear. β appeared to represent the slope of the cardiac response curve at the venous return curve equilibrium point. Measurements were possible at a significantly lower VTI than the equivalent time domain metrics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28.CrossRefPubMed Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28.CrossRefPubMed
2.
go back to reference Cannesson M, Aboy M, Hofer CK, Rehman M. Pulse pressure variation: where are we today? J Clin Monit Comput. 2011;25(1):45–56.CrossRefPubMed Cannesson M, Aboy M, Hofer CK, Rehman M. Pulse pressure variation: where are we today? J Clin Monit Comput. 2011;25(1):45–56.CrossRefPubMed
3.
go back to reference Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–41.CrossRefPubMed Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–41.CrossRefPubMed
4.
go back to reference Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Hénaine R, Lehot JJ. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg 2008;106(4):1195–200.CrossRefPubMed Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Hénaine R, Lehot JJ. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg 2008;106(4):1195–200.CrossRefPubMed
5.
go back to reference Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29(3):476–80.CrossRefPubMed Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29(3):476–80.CrossRefPubMed
6.
go back to reference De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.CrossRefPubMed De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.CrossRefPubMed
7.
go back to reference Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, Edouard AR. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg. 2006;102(5):1511–7.CrossRefPubMed Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, Edouard AR. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg. 2006;102(5):1511–7.CrossRefPubMed
8.
go back to reference Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med. 2011;37(10):1672–9.CrossRefPubMed Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med. 2011;37(10):1672–9.CrossRefPubMed
9.
go back to reference Thiele RH, Colquhoun DA, Tucker-Schwartz JM, Gillies GT, Durieux ME. Radial-femoral concordance in time and frequency domain-based estimates of systemic arterial respiratory variation. J Clin Monit Comput. 2012;26(5):393–400.CrossRefPubMed Thiele RH, Colquhoun DA, Tucker-Schwartz JM, Gillies GT, Durieux ME. Radial-femoral concordance in time and frequency domain-based estimates of systemic arterial respiratory variation. J Clin Monit Comput. 2012;26(5):393–400.CrossRefPubMed
10.
go back to reference Shin WJ, Choi JM, Kong YG, Song JG, Kim YK, Hwang GS. Spectral analysis of respiratory-related hemodynamic variables in simulated hypovolemia: a study in healthy volunteers with spontaneous breathing using a paced breathing activity. Korean J Anesthesiol. 2010;58(6):542–9.CrossRefPubMedPubMedCentral Shin WJ, Choi JM, Kong YG, Song JG, Kim YK, Hwang GS. Spectral analysis of respiratory-related hemodynamic variables in simulated hypovolemia: a study in healthy volunteers with spontaneous breathing using a paced breathing activity. Korean J Anesthesiol. 2010;58(6):542–9.CrossRefPubMedPubMedCentral
11.
go back to reference Pybus DA. Expanding the role of mobile devices in the operating room: direct wireless connection to the anesthesia monitor. J Cardiothorac Vasc Anesth. 2015;29(3):785–90.CrossRefPubMed Pybus DA. Expanding the role of mobile devices in the operating room: direct wireless connection to the anesthesia monitor. J Cardiothorac Vasc Anesth. 2015;29(3):785–90.CrossRefPubMed
12.
go back to reference Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.CrossRefPubMed Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.CrossRefPubMed
13.
go back to reference Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Assessment of severity of aortic regurgitation using the width of the vena contracta: a clinical color Doppler imaging study. Circulation. 2000;102(5):558–64.CrossRefPubMed Tribouilloy CM, Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ. Assessment of severity of aortic regurgitation using the width of the vena contracta: a clinical color Doppler imaging study. Circulation. 2000;102(5):558–64.CrossRefPubMed
14.
go back to reference Heinzel G, Rudiger A, Schilling R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows. (Technical report). Max Planck Institute for Gravitational Wave Astronomy. (Max Planck Institute Document ID: 395068.0). Heinzel G, Rudiger A, Schilling R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows. (Technical report). Max Planck Institute for Gravitational Wave Astronomy. (Max Planck Institute Document ID: 395068.0).
15.
go back to reference Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978;66:51–83.CrossRef Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978;66:51–83.CrossRef
16.
go back to reference Alian AA. Anesthesiologist as physiologist: discussion and examples of clinical waveform analysis. Anesth Analg. 2017;124(1):154–66.CrossRefPubMed Alian AA. Anesthesiologist as physiologist: discussion and examples of clinical waveform analysis. Anesth Analg. 2017;124(1):154–66.CrossRefPubMed
17.
go back to reference Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–6.CrossRefPubMed Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–6.CrossRefPubMed
18.
go back to reference García MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18(6):626.CrossRefPubMedPubMedCentral García MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18(6):626.CrossRefPubMedPubMedCentral
19.
go back to reference Monge García MI, Guijo González P, Gracia Romero M, Gil Cano A, Rhodes A, Grounds RM, Cecconi M. (2017). Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth. 118(6):938–46.CrossRefPubMed Monge García MI, Guijo González P, Gracia Romero M, Gil Cano A, Rhodes A, Grounds RM, Cecconi M. (2017). Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth. 118(6):938–46.CrossRefPubMed
20.
go back to reference Segers P, Morimont P, Kolh P, Stergiopulos N, Westerhof N, Verdonck P. Arterial elastance and heart-arterial coupling in aortic regurgitation are determined by aortic leak severity. Am Heart J. 2002;144(4):568–76.CrossRefPubMed Segers P, Morimont P, Kolh P, Stergiopulos N, Westerhof N, Verdonck P. Arterial elastance and heart-arterial coupling in aortic regurgitation are determined by aortic leak severity. Am Heart J. 2002;144(4):568–76.CrossRefPubMed
21.
go back to reference Morita S, Ochiai Y, Tanoue Y, Hisahara M, Masuda M, Yasui H. Acute volume reduction with aortic valve replacement immediately improves ventricular mechanics in patients with aortic regurgitation. J Thorac Cardiovasc Surg. 2003;125(2):283–9.CrossRefPubMed Morita S, Ochiai Y, Tanoue Y, Hisahara M, Masuda M, Yasui H. Acute volume reduction with aortic valve replacement immediately improves ventricular mechanics in patients with aortic regurgitation. J Thorac Cardiovasc Surg. 2003;125(2):283–9.CrossRefPubMed
22.
go back to reference Tanoue Y, Maeda T, Oda S, Baba H, Oishi Y, Tokunaga S, Nakashima A, Tominaga R. Left ventricular performance in aortic valve replacement. Interact Cardiovasc Thorac Surg. 2009;9(2):255–9.CrossRefPubMed Tanoue Y, Maeda T, Oda S, Baba H, Oishi Y, Tokunaga S, Nakashima A, Tominaga R. Left ventricular performance in aortic valve replacement. Interact Cardiovasc Thorac Surg. 2009;9(2):255–9.CrossRefPubMed
23.
go back to reference Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care. 2014;20(3):288–93.CrossRef Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care. 2014;20(3):288–93.CrossRef
24.
go back to reference Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.CrossRefPubMed Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.CrossRefPubMed
25.
go back to reference Lafanechère A, Pène F, Goulenok C, Delahaye A, Mallet V, Choukroun G, Chiche JD, Mira JP, Cariou A. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care. 2006;10(5):R132.CrossRefPubMedPubMedCentral Lafanechère A, Pène F, Goulenok C, Delahaye A, Mallet V, Choukroun G, Chiche JD, Mira JP, Cariou A. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care. 2006;10(5):R132.CrossRefPubMedPubMedCentral
26.
go back to reference Geerts B, de Wilde R, Aarts L, Jansen J. Pulse contour analysis to assess hemodynamic response to passive leg raising. J Cardiothorac Vasc Anesth. 2011;25(1):48–52.CrossRefPubMed Geerts B, de Wilde R, Aarts L, Jansen J. Pulse contour analysis to assess hemodynamic response to passive leg raising. J Cardiothorac Vasc Anesth. 2011;25(1):48–52.CrossRefPubMed
27.
go back to reference Guérin L, Teboul JL, Persichini R, Dres M, Richard C, Monnet X. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crit Care. 2015;19:411.CrossRefPubMedPubMedCentral Guérin L, Teboul JL, Persichini R, Dres M, Richard C, Monnet X. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crit Care. 2015;19:411.CrossRefPubMedPubMedCentral
28.
go back to reference Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, Fortier A, Denault AY. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63(9):1033–41.CrossRefPubMed Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, Fortier A, Denault AY. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63(9):1033–41.CrossRefPubMed
29.
go back to reference Kramer A, Zygun D, Hawes H, Easton P, Ferland A. Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest. 2004;126(5):1563–8.CrossRefPubMed Kramer A, Zygun D, Hawes H, Easton P, Ferland A. Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest. 2004;126(5):1563–8.CrossRefPubMed
30.
go back to reference Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.CrossRefPubMed Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.CrossRefPubMed
31.
go back to reference Hofer CK, Müller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005;128(2):848–54.CrossRefPubMed Hofer CK, Müller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005;128(2):848–54.CrossRefPubMed
32.
go back to reference Datex-Ohmeda Record Specification. 10th ed. Helsinki: GE Healthcare, S/5 System Interface; 2017. p. 58 Datex-Ohmeda Record Specification. 10th ed. Helsinki: GE Healthcare, S/5 System Interface; 2017. p. 58
33.
go back to reference Aboy M, McNames J, Thong T, Phillips CR, Ellenby MS, Goldstein B. A novel algorithm to estimate the pulse pressure variation index deltaPP. IEEE Trans Biomed Eng. 2004;51(12):2198–203.CrossRefPubMed Aboy M, McNames J, Thong T, Phillips CR, Ellenby MS, Goldstein B. A novel algorithm to estimate the pulse pressure variation index deltaPP. IEEE Trans Biomed Eng. 2004;51(12):2198–203.CrossRefPubMed
34.
go back to reference Feldman JM. Can clinical monitors be used as scientific instruments? Anesth Analg. 2006;103:1071–2.CrossRefPubMed Feldman JM. Can clinical monitors be used as scientific instruments? Anesth Analg. 2006;103:1071–2.CrossRefPubMed
Metadata
Title
Real-time, spectral analysis of the arterial pressure waveform using a wirelessly-connected, tablet computer: a pilot study
Author
David Andrew Pybus
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 1/2019
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0145-0

Other articles of this Issue 1/2019

Journal of Clinical Monitoring and Computing 1/2019 Go to the issue