Skip to main content
Top
Published in: Journal of Clinical Immunology 6/2008

01-11-2008

Multiple Sclerosis and Regulatory T Cells

Authors: Cristina Maria Costantino, Clare Baecher-Allan, David A. Hafler

Published in: Journal of Clinical Immunology | Issue 6/2008

Login to get access

Abstract

Introduction

Multiple sclerosis (MS) is a complex genetic disease characterized by chronic inflammation of the central nervous system (CNS). The pathology of MS is largely attributed to autoreactive effector T cells that penetrate the blood–brain barrier and become activated within the CNS. As autoreactive T cells are present in the blood of both patients with MS and healthy individuals, other regulatory mechanisms exist to prevent autoreactive T cells from causing immune disorders. Active suppression by regulatory T (Treg) cells plays a key role in the control of self-antigen-reactive T cells and the induction of peripheral tolerance in vivo. In particular, the importance of antigen-specific Treg cells in conferring genetic resistance to organ-specific autoimmunity and in limiting autoimmune tissue damage has been documented in many disease models including MS.

Results

We have found that the frequency of Tregs in MS patients is unchanged from controls, but their function measured in vitro may be diminished, correlating with impaired inhibitory activity in vivo. This review discusses the immunopathology of MS with particular focus given to regulatory T cells and their potential for the development of new therapies to treat this disease.
Literature
1.
go back to reference Mackay RP, Myrianth NC. Multiple sclerosis in twins and their relatives—final report. Arch Neurol 1966;15(5):449–57.PubMed Mackay RP, Myrianth NC. Multiple sclerosis in twins and their relatives—final report. Arch Neurol 1966;15(5):449–57.PubMed
2.
go back to reference International Multiple Sclerosis Genetic ConsortiumHafler DA, Compston A, Sawcer S, Lander S, Daly MJ, DeJager PL, de Bakker PIW, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL. Novel risk alleles for multiple sclerosis identified by a whole genome association study. N Engl J Med 2007;357:851–62.PubMedCrossRef International Multiple Sclerosis Genetic ConsortiumHafler DA, Compston A, Sawcer S, Lander S, Daly MJ, DeJager PL, de Bakker PIW, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL. Novel risk alleles for multiple sclerosis identified by a whole genome association study. N Engl J Med 2007;357:851–62.PubMedCrossRef
3.
go back to reference McCarthy MI. Susceptibility gene discovery for common metabolic and endocrine traits. J Mol Endocrin 2002;28:1–17.CrossRef McCarthy MI. Susceptibility gene discovery for common metabolic and endocrine traits. J Mol Endocrin 2002;28:1–17.CrossRef
4.
go back to reference Kabat EA, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma-globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med 1948;4(5):653–62.PubMedCrossRef Kabat EA, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma-globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med 1948;4(5):653–62.PubMedCrossRef
5.
go back to reference Rivers TM, Sprunt DH, Berry GP. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 1933;58(1):39–U58.CrossRef Rivers TM, Sprunt DH, Berry GP. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 1933;58(1):39–U58.CrossRef
6.
go back to reference Goverman J, et al. Transgenic mice that express a myelin basic protein-specific T-cell receptor develop spontaneous autoimmunity. Cell 1993;72(4):551–60.PubMedCrossRef Goverman J, et al. Transgenic mice that express a myelin basic protein-specific T-cell receptor develop spontaneous autoimmunity. Cell 1993;72(4):551–60.PubMedCrossRef
7.
go back to reference Miller DH, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. New Eng J Med 2003;348:15–23.PubMedCrossRef Miller DH, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. New Eng J Med 2003;348:15–23.PubMedCrossRef
8.
go back to reference Ota K, et al. T-cell recognition of an immunodominant myelin basic-protein epitope in multiple-sclerosis. Nature 1990;346(6280):183–7.PubMedCrossRef Ota K, et al. T-cell recognition of an immunodominant myelin basic-protein epitope in multiple-sclerosis. Nature 1990;346(6280):183–7.PubMedCrossRef
9.
go back to reference Pette M, et al. Myelin basic protein-specific lymphocyte—T lines from MS patients and healthy-individuals. Neurology 1990;40(11):1770–6.PubMed Pette M, et al. Myelin basic protein-specific lymphocyte—T lines from MS patients and healthy-individuals. Neurology 1990;40(11):1770–6.PubMed
10.
go back to reference Martin R, et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T-cell lines from multiple-sclerosis patients and healthy-individuals. J Immunol 1990;145(2):540–8.PubMed Martin R, et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T-cell lines from multiple-sclerosis patients and healthy-individuals. J Immunol 1990;145(2):540–8.PubMed
11.
go back to reference Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 2005;6(5):490–6.PubMedCrossRef Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 2005;6(5):490–6.PubMedCrossRef
12.
go back to reference Ausubel LJ, et al. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc Natl Acad Sci U S A 1996;93(26):15317–22.PubMedCrossRef Ausubel LJ, et al. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc Natl Acad Sci U S A 1996;93(26):15317–22.PubMedCrossRef
13.
go back to reference Zhang X, et al. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Euro J Immunol 2008;38(5):1297–309.CrossRef Zhang X, et al. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Euro J Immunol 2008;38(5):1297–309.CrossRef
14.
go back to reference Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230(4729):1043–5.PubMedCrossRef Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230(4729):1043–5.PubMedCrossRef
15.
go back to reference Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell-mediated autoimmunity—viral peptides activate human T-cell clones specific for myelin basic-protein. Cell 1995;80(5):695–705.PubMedCrossRef Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell-mediated autoimmunity—viral peptides activate human T-cell clones specific for myelin basic-protein. Cell 1995;80(5):695–705.PubMedCrossRef
16.
go back to reference Hemmer B, et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997;185(9):1651–9.PubMedCrossRef Hemmer B, et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997;185(9):1651–9.PubMedCrossRef
17.
go back to reference Lang HL, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002;3(10):940–3.PubMedCrossRef Lang HL, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002;3(10):940–3.PubMedCrossRef
18.
go back to reference Lenz DC, et al. A Chlamydia pneumoniae-specific peptide induces experimental autoimmune encephalomyelitis in rats. J Immunol 2001;167(3):1803–8.PubMed Lenz DC, et al. A Chlamydia pneumoniae-specific peptide induces experimental autoimmune encephalomyelitis in rats. J Immunol 2001;167(3):1803–8.PubMed
19.
go back to reference Fujinami RS, et al. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A 1983;80(8):2346–50.PubMedCrossRef Fujinami RS, et al. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A 1983;80(8):2346–50.PubMedCrossRef
20.
go back to reference Croxford JL, Anger HA, Miller SD. Viral delifery of an epitope from Haemophilus influenzae induces central nervous system autoimmune disease by molecular mimicry. J Immunol 2005;174(2):907–17.PubMed Croxford JL, Anger HA, Miller SD. Viral delifery of an epitope from Haemophilus influenzae induces central nervous system autoimmune disease by molecular mimicry. J Immunol 2005;174(2):907–17.PubMed
21.
go back to reference Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neuro 2007;61(4):288–99.CrossRef Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neuro 2007;61(4):288–99.CrossRef
22.
go back to reference de Jager PL, et al. Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 2008;70(13 part 2):1113–8.PubMed de Jager PL, et al. Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 2008;70(13 part 2):1113–8.PubMed
23.
go back to reference Lehmann PV, et al. Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155–7.PubMedCrossRef Lehmann PV, et al. Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155–7.PubMedCrossRef
24.
go back to reference Ellmerich S, et al. Disease-related epitope spread in a humanized T cell receptor transgenic model of multiple sclerosis. Eur J Immunol 2004;34(7):1839–48.PubMedCrossRef Ellmerich S, et al. Disease-related epitope spread in a humanized T cell receptor transgenic model of multiple sclerosis. Eur J Immunol 2004;34(7):1839–48.PubMedCrossRef
25.
go back to reference Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. New Eng J Med 1998;338(5):278–85.PubMedCrossRef Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. New Eng J Med 1998;338(5):278–85.PubMedCrossRef
26.
go back to reference Lucchinetti CF, et al. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 1996;6(3):259–74.PubMedCrossRef Lucchinetti CF, et al. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 1996;6(3):259–74.PubMedCrossRef
27.
go back to reference Wucherpfennig KW, et al. T-cell receptor V-alpha-V-beta repertoire and cytokine gene-expression in active multiple-sclerosis lesions. J Exp Med 1992;175(4):993–1002.PubMedCrossRef Wucherpfennig KW, et al. T-cell receptor V-alpha-V-beta repertoire and cytokine gene-expression in active multiple-sclerosis lesions. J Exp Med 1992;175(4):993–1002.PubMedCrossRef
28.
go back to reference Traugott U, Reinherz EL, Raine CS. Multiple-sclerosis—distribution of T-cell subsets within active chronic lesions. Science 1983;219(4582):308–10.PubMedCrossRef Traugott U, Reinherz EL, Raine CS. Multiple-sclerosis—distribution of T-cell subsets within active chronic lesions. Science 1983;219(4582):308–10.PubMedCrossRef
29.
go back to reference Hauser SL, et al. Immunohistochemical analysis of the cellular infiltrate in multiple-sclerosis lesions. Ann Neurol 1986;19(6):578–87.PubMedCrossRef Hauser SL, et al. Immunohistochemical analysis of the cellular infiltrate in multiple-sclerosis lesions. Ann Neurol 1986;19(6):578–87.PubMedCrossRef
30.
go back to reference Wucherpfennig KW, et al. Gamma-delta T-cell receptor repertoire in acute multiple-sclerosis lesions. Proc Natl Acad Sci U S A 1992;89(10):4588–92.PubMedCrossRef Wucherpfennig KW, et al. Gamma-delta T-cell receptor repertoire in acute multiple-sclerosis lesions. Proc Natl Acad Sci U S A 1992;89(10):4588–92.PubMedCrossRef
31.
go back to reference Prineas JW, Wright RG. Macrophages, lymphocytes, and plasma-cells in perivascular compartment in chronic multiple-sclerosis. Lab Invest 1978;38(4):409–21.PubMed Prineas JW, Wright RG. Macrophages, lymphocytes, and plasma-cells in perivascular compartment in chronic multiple-sclerosis. Lab Invest 1978;38(4):409–21.PubMed
32.
go back to reference Prineas J. Pathology of early lesion in multiple-sclerosis. Human Pathol 1975;6(5):531–54.CrossRef Prineas J. Pathology of early lesion in multiple-sclerosis. Human Pathol 1975;6(5):531–54.CrossRef
33.
go back to reference Becher B, et al. Soluble tumor necrosis factor receptor inhibits interleukin 12 production by stimulated human adult microglial cells in vitro. J Clin Invest 1996;98(7):1539–43.PubMedCrossRef Becher B, et al. Soluble tumor necrosis factor receptor inhibits interleukin 12 production by stimulated human adult microglial cells in vitro. J Clin Invest 1996;98(7):1539–43.PubMedCrossRef
34.
go back to reference Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. TIM-3 is expressed by cells of the innate immune system and promotes tissue inflammation. Science 2007;318(5853):1141–3.PubMedCrossRef Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. TIM-3 is expressed by cells of the innate immune system and promotes tissue inflammation. Science 2007;318(5853):1141–3.PubMedCrossRef
35.
go back to reference Lehnardt S, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003;100(14):8514–9.PubMedCrossRef Lehnardt S, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003;100(14):8514–9.PubMedCrossRef
36.
go back to reference Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302(5651):1760–5.PubMedCrossRef Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302(5651):1760–5.PubMedCrossRef
37.
go back to reference Ekdahl CT, et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003;100(23):13632–7.PubMedCrossRef Ekdahl CT, et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003;100(23):13632–7.PubMedCrossRef
38.
go back to reference Baranzini SE, et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 2000;165(11):6576–82.PubMed Baranzini SE, et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 2000;165(11):6576–82.PubMed
39.
go back to reference Mycko MP, et al. Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 2004;106(3):223–9.PubMedCrossRef Mycko MP, et al. Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 2004;106(3):223–9.PubMedCrossRef
40.
go back to reference Aloisi F, et al. IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 1997;159(4):1604–12.PubMed Aloisi F, et al. IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 1997;159(4):1604–12.PubMed
41.
go back to reference Ledeboer A, et al. Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 2000;30(2):134–42.PubMedCrossRef Ledeboer A, et al. Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 2000;30(2):134–42.PubMedCrossRef
42.
go back to reference Onuki I, et al. Axonal degeneration is an early pathological feature in autoimmune-mediated demyelination in mice. Microsc Res Tech 2001;52(6):731–9.PubMedCrossRef Onuki I, et al. Axonal degeneration is an early pathological feature in autoimmune-mediated demyelination in mice. Microsc Res Tech 2001;52(6):731–9.PubMedCrossRef
43.
go back to reference Ayers MM, et al. Early glial responses in murine models of multiple sclerosis. Neurochem Int 2004;45(2–3):409–19.PubMedCrossRef Ayers MM, et al. Early glial responses in murine models of multiple sclerosis. Neurochem Int 2004;45(2–3):409–19.PubMedCrossRef
44.
go back to reference Trajkovic V, et al. Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 2004;47(2):168–79.PubMedCrossRef Trajkovic V, et al. Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 2004;47(2):168–79.PubMedCrossRef
45.
46.
go back to reference Pullen AM, Marrack P, Kappler JW. Evidence that MLS-2 antigens which delete V-beta-3+ T-cells are controlled by multiple genes. J Immunol 1989;142(9):3033–7.PubMed Pullen AM, Marrack P, Kappler JW. Evidence that MLS-2 antigens which delete V-beta-3+ T-cells are controlled by multiple genes. J Immunol 1989;142(9):3033–7.PubMed
47.
go back to reference Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101(5):455–8.PubMedCrossRef Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101(5):455–8.PubMedCrossRef
48.
go back to reference Shevach EM, et al. Control of T-cell activation by CD4(+) CD25(+) suppressor T cells. Immunol Rev 2001;182:58–67.PubMedCrossRef Shevach EM, et al. Control of T-cell activation by CD4(+) CD25(+) suppressor T cells. Immunol Rev 2001;182:58–67.PubMedCrossRef
49.
go back to reference Sakaguchi S, et al. Organ-specific autoimmune-diseases induced in mice by elimination of T-cell subset 1. Evidence for the active participation of T-cells in natural self-tolerance—deficit of a T-cell subset as a possible cause of autoimmune-disease. J Exp Med 1985;161(1):72–87.PubMedCrossRef Sakaguchi S, et al. Organ-specific autoimmune-diseases induced in mice by elimination of T-cell subset 1. Evidence for the active participation of T-cells in natural self-tolerance—deficit of a T-cell subset as a possible cause of autoimmune-disease. J Exp Med 1985;161(1):72–87.PubMedCrossRef
50.
go back to reference Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192(2):295–302.PubMedCrossRef Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192(2):295–302.PubMedCrossRef
51.
go back to reference Baecher-Allan C, et al. CD4+CD25(high) regulatory cells in human peripheral blood. J Immunol 2001;167(3):1245–53.PubMed Baecher-Allan C, et al. CD4+CD25(high) regulatory cells in human peripheral blood. J Immunol 2001;167(3):1245–53.PubMed
52.
go back to reference Dieckmann D, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001;193(11):1303–10.PubMedCrossRef Dieckmann D, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001;193(11):1303–10.PubMedCrossRef
53.
go back to reference Wang J, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007;37:129–38.PubMedCrossRef Wang J, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007;37:129–38.PubMedCrossRef
54.
go back to reference Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:329–41.PubMedCrossRef Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:329–41.PubMedCrossRef
55.
go back to reference Liu W, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med 2006;203:1701–11.PubMedCrossRef Liu W, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med 2006;203:1701–11.PubMedCrossRef
56.
go back to reference Seddiki N, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006;203:1693–700.PubMedCrossRef Seddiki N, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006;203:1693–700.PubMedCrossRef
57.
go back to reference Ruprecht CR, et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in invlamed synovia. J Exp Med 2005;201:1793–803.PubMedCrossRef Ruprecht CR, et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in invlamed synovia. J Exp Med 2005;201:1793–803.PubMedCrossRef
58.
go back to reference Baecher-Allan CM, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 2006;176:4622–31.PubMed Baecher-Allan CM, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 2006;176:4622–31.PubMed
59.
go back to reference Baecher-Allan CM, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Imm Rev 2006;212:203–16.CrossRef Baecher-Allan CM, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Imm Rev 2006;212:203–16.CrossRef
60.
go back to reference Dieckmann D, et al. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing contact-independent type 1-like regulatory T cells. J Exp Med 2002;196:247–53.PubMedCrossRef Dieckmann D, et al. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing contact-independent type 1-like regulatory T cells. J Exp Med 2002;196:247–53.PubMedCrossRef
61.
go back to reference Jonuleit H, et al. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) helper cells. J Exp Med 2002;196:255–60.PubMedCrossRef Jonuleit H, et al. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) helper cells. J Exp Med 2002;196:255–60.PubMedCrossRef
62.
go back to reference Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 2002;169(11):6210–7.PubMed Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 2002;169(11):6210–7.PubMed
63.
go back to reference Reijonen H, et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002;51(5):1375–82.PubMedCrossRef Reijonen H, et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002;51(5):1375–82.PubMedCrossRef
64.
go back to reference Viglietta V, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004;199(7):971–9.PubMedCrossRef Viglietta V, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004;199(7):971–9.PubMedCrossRef
65.
go back to reference Huan J, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005;81(1):45–52.PubMedCrossRef Huan J, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005;81(1):45–52.PubMedCrossRef
66.
go back to reference Venken K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006;83(8):1432–46.PubMedCrossRef Venken K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006;83(8):1432–46.PubMedCrossRef
67.
go back to reference Astier AL, et al. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 2006;116(12):3252–7.PubMedCrossRef Astier AL, et al. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 2006;116(12):3252–7.PubMedCrossRef
68.
go back to reference Cao D, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. J Immunol 1998;160:1532–8. Cao D, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. J Immunol 1998;160:1532–8.
69.
go back to reference Sugiyama H, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005;174:164–73.PubMed Sugiyama H, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005;174:164–73.PubMed
70.
go back to reference Lindley S, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005;54:92–9.PubMedCrossRef Lindley S, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005;54:92–9.PubMedCrossRef
71.
go back to reference Balandina A, et al. Analysis of CD4+CD25+ cell population in the thymus from myasthenia gravis patients. Ann NY Acad Sci 2003;998:275–7.PubMedCrossRef Balandina A, et al. Analysis of CD4+CD25+ cell population in the thymus from myasthenia gravis patients. Ann NY Acad Sci 2003;998:275–7.PubMedCrossRef
72.
go back to reference Gambineri E, et al. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheum 2003;15:430–5.CrossRef Gambineri E, et al. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheum 2003;15:430–5.CrossRef
73.
go back to reference Hafler DA, et al. Risk alleles for multiple sclerosis identified by a genomewide study. New Eng J Med 2007;357:851–62.PubMedCrossRef Hafler DA, et al. Risk alleles for multiple sclerosis identified by a genomewide study. New Eng J Med 2007;357:851–62.PubMedCrossRef
74.
go back to reference The Wellcome Trust Cast Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.CrossRef The Wellcome Trust Cast Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.CrossRef
75.
go back to reference Kohm AP, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002;169(9):4712–6.PubMed Kohm AP, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002;169(9):4712–6.PubMed
76.
go back to reference McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005;175(5):3025–32.PubMed McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005;175(5):3025–32.PubMed
77.
go back to reference Gartner D, et al. CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 2006;172(1–2):73–84.PubMedCrossRef Gartner D, et al. CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 2006;172(1–2):73–84.PubMedCrossRef
78.
go back to reference Zhang X, et al. Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. Int Immunol 2006;18(4):495–503.PubMedCrossRef Zhang X, et al. Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. Int Immunol 2006;18(4):495–503.PubMedCrossRef
79.
go back to reference Korn T, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007;13(4):423–31.PubMedCrossRef Korn T, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007;13(4):423–31.PubMedCrossRef
Metadata
Title
Multiple Sclerosis and Regulatory T Cells
Authors
Cristina Maria Costantino
Clare Baecher-Allan
David A. Hafler
Publication date
01-11-2008
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 6/2008
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-008-9236-x

Other articles of this Issue 6/2008

Journal of Clinical Immunology 6/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.