Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 1/2013

01-06-2013 | Reviews

Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives

Authors: Saagar Mahida, Andrew J. Hogarth, Campbell Cowan, Muzahir H. Tayebjee, Lee N. Graham, Christopher B. Pepper

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 1/2013

Login to get access

Abstract

The long QT syndrome (LQTS) is a condition characterized by abnormal prolongation of the QT interval with an associated risk of ventricular arrhythmias and sudden cardiac death. Congenital forms of LQTS arise due to rare and highly penetrant mutations that segregate in a Mendelian fashion. Over the years, multiple mutations in genes encoding ion channels and ion channel binding proteins have been reported to underlie congenital LQTS. Drugs are by far the most common cause of acquired forms of LQTS. Emerging evidence suggests that drug-induced LQTS also has a significant heritable component. However, the genetic substrate underlying drug-induced LQTS is presently largely unknown. In recent years, advances in next-generation sequencing technology and molecular biology techniques have significantly enhanced our ability to identify genetic variants underlying both monogenic diseases and more complex traits. In this review, we discuss the genetic basis of congenital and drug-induced LQTS and focus on future avenues of research in the field. Ultimately, a detailed characterization of the genetic substrate underlying congenital and drug-induced LQTS will enhance risk stratification and potentially result in the development of tailored genotype-based therapies.
Literature
1.
go back to reference Kannankeril, P., Roden, D. M., & Darbar, D. (2010). Drug-induced long QT syndrome. Pharmacological Reviews, 62(4), 760–781.PubMedCrossRef Kannankeril, P., Roden, D. M., & Darbar, D. (2010). Drug-induced long QT syndrome. Pharmacological Reviews, 62(4), 760–781.PubMedCrossRef
2.
go back to reference Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54(1), 59–68.PubMedCrossRef Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54(1), 59–68.PubMedCrossRef
3.
go back to reference Romano, C., Gemme, G., & Pongiglione, R. (1963). Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. Presentation of 1st case in Italian pediatric literature. Clinical Pediatrics Bologna, 45, 656–683. Romano, C., Gemme, G., & Pongiglione, R. (1963). Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. Presentation of 1st case in Italian pediatric literature. Clinical Pediatrics Bologna, 45, 656–683.
4.
go back to reference Ward, O. C. (1964). A new familial cardiac syndrome in children. Journal of the Irish Medical Association, 54, 103–106.PubMed Ward, O. C. (1964). A new familial cardiac syndrome in children. Journal of the Irish Medical Association, 54, 103–106.PubMed
5.
go back to reference Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., et al. (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics, 12(1), 17–23.PubMedCrossRef Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., et al. (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics, 12(1), 17–23.PubMedCrossRef
6.
go back to reference Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5), 795–803.PubMedCrossRef Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5), 795–803.PubMedCrossRef
7.
go back to reference Ruan, Y., Liu, N., Napolitano, C., & Priori, S. G. (2008). Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circulation. Arrhythmia and Electrophysiology, 1(4), 290–297.PubMedCrossRef Ruan, Y., Liu, N., Napolitano, C., & Priori, S. G. (2008). Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circulation. Arrhythmia and Electrophysiology, 1(4), 290–297.PubMedCrossRef
8.
go back to reference Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., et al. (2003). Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 421(6923), 634–639.PubMedCrossRef Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., et al. (2003). Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 421(6923), 634–639.PubMedCrossRef
9.
go back to reference Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkamp, W., Chen, Q., Sun, Y., et al. (1997). KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nature Genetics, 17(3), 267–268.PubMedCrossRef Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkamp, W., Chen, Q., Sun, Y., et al. (1997). KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nature Genetics, 17(3), 267–268.PubMedCrossRef
10.
go back to reference Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., et al. (1999). MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 97(2), 175–187.PubMedCrossRef Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., et al. (1999). MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 97(2), 175–187.PubMedCrossRef
11.
go back to reference Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell, 105(4), 511–519.PubMedCrossRef Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell, 105(4), 511–519.PubMedCrossRef
12.
go back to reference Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102(10), 1178–1185.PubMedCrossRef Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102(10), 1178–1185.PubMedCrossRef
13.
go back to reference Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMedCrossRef Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMedCrossRef
14.
go back to reference Medeiros-Domingo, A., Kaku, T., Tester, D. J., Iturralde-Torres, P., Itty, A., Ye, B., et al. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116(2), 134–142.PubMedCrossRef Medeiros-Domingo, A., Kaku, T., Tester, D. J., Iturralde-Torres, P., Itty, A., Ye, B., et al. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116(2), 134–142.PubMedCrossRef
15.
go back to reference Chen, L., Marquardt, M. L., Tester, D. J., Sampson, K. J., Ackerman, M. J., & Kass, R. S. (2007). Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20990–20995.PubMedCrossRef Chen, L., Marquardt, M. L., Tester, D. J., Sampson, K. J., Ackerman, M. J., & Kass, R. S. (2007). Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20990–20995.PubMedCrossRef
16.
go back to reference Ueda, K., Valdivia, C., Medeiros-Domingo, A., Tester, D. J., Vatta, M., Farrugia, G., et al. (2008). Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9355–9360.PubMedCrossRef Ueda, K., Valdivia, C., Medeiros-Domingo, A., Tester, D. J., Vatta, M., Farrugia, G., et al. (2008). Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9355–9360.PubMedCrossRef
17.
go back to reference Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. American Journal of Human Genetics, 86(6), 872–880.PubMedCrossRef Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. American Journal of Human Genetics, 86(6), 872–880.PubMedCrossRef
18.
go back to reference Crumb, W., & Cavero, I. I. (1999). QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharmacology Science Technology Today, 2(7), 270–280.CrossRef Crumb, W., & Cavero, I. I. (1999). QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharmacology Science Technology Today, 2(7), 270–280.CrossRef
19.
go back to reference Roden, D. M. (2004). Drug-induced prolongation of the QT interval. The New England Journal of Medicine, 350(10), 1013–1022.PubMedCrossRef Roden, D. M. (2004). Drug-induced prolongation of the QT interval. The New England Journal of Medicine, 350(10), 1013–1022.PubMedCrossRef
20.
go back to reference Roden, D. M. (2011). Personalized medicine and the genotype-phenotype dilemma. Journal of Interventional Cardiac Electrophysiology, 31(1), 17–23.PubMedCrossRef Roden, D. M. (2011). Personalized medicine and the genotype-phenotype dilemma. Journal of Interventional Cardiac Electrophysiology, 31(1), 17–23.PubMedCrossRef
21.
go back to reference Keating, M., Atkinson, D., Dunn, C., Timothy, K., Vincent, G. M., & Leppert, M. (1991). Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science, 252(5006), 704–706.PubMedCrossRef Keating, M., Atkinson, D., Dunn, C., Timothy, K., Vincent, G. M., & Leppert, M. (1991). Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science, 252(5006), 704–706.PubMedCrossRef
22.
go back to reference Ott, J. (Ed.). (1991). Analysis of human genetic linkage. Baltimore: The John Hopkins University Press. Ott, J. (Ed.). (1991). Analysis of human genetic linkage. Baltimore: The John Hopkins University Press.
23.
go back to reference Kuhlenbaumer, G., Hullmann, J., & Appenzeller, S. (2011). Novel genomic techniques open new avenues in the analysis of monogenic disorders. Human Mutation, 32(2), 144–151.PubMedCrossRef Kuhlenbaumer, G., Hullmann, J., & Appenzeller, S. (2011). Novel genomic techniques open new avenues in the analysis of monogenic disorders. Human Mutation, 32(2), 144–151.PubMedCrossRef
24.
go back to reference Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2(5), 507–517.PubMedCrossRef Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2(5), 507–517.PubMedCrossRef
25.
go back to reference Shimizu, W. (2008). Clinical impact of genetic studies in lethal inherited cardiac arrhythmias. Circulation Journal, 72(12), 1926–1936.PubMedCrossRef Shimizu, W. (2008). Clinical impact of genetic studies in lethal inherited cardiac arrhythmias. Circulation Journal, 72(12), 1926–1936.PubMedCrossRef
26.
go back to reference Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J. L., et al. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80(5), 805–811.PubMedCrossRef Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J. L., et al. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80(5), 805–811.PubMedCrossRef
27.
go back to reference Tester, D. J., & Ackerman, M. J. (2011). Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation, 123(9), 1021–1037.PubMedCrossRef Tester, D. J., & Ackerman, M. J. (2011). Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation, 123(9), 1021–1037.PubMedCrossRef
28.
go back to reference Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.PubMedCrossRef Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.PubMedCrossRef
29.
go back to reference Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 86(6), 872–880.PubMedCrossRef Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 86(6), 872–880.PubMedCrossRef
30.
go back to reference Norton, N., Robertson, P. D., Rieder, M. J., Zuchner, S., Rampersaud, E., Martin, E., et al. (2012). Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era. Circulation. Cardiovascular Genetics, 5(2), 167–174.PubMedCrossRef Norton, N., Robertson, P. D., Rieder, M. J., Zuchner, S., Rampersaud, E., Martin, E., et al. (2012). Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era. Circulation. Cardiovascular Genetics, 5(2), 167–174.PubMedCrossRef
31.
go back to reference Shah, M., Akar, F. G., & Tomaselli, G. F. (2005). Molecular basis of arrhythmias. Circulation, 112(16), 2517–2529.PubMedCrossRef Shah, M., Akar, F. G., & Tomaselli, G. F. (2005). Molecular basis of arrhythmias. Circulation, 112(16), 2517–2529.PubMedCrossRef
32.
go back to reference Napolitano, C. (2012). Genetic testing of inherited arrhythmias. Pediatric Cardiology, 33(6), 980–987.PubMedCrossRef Napolitano, C. (2012). Genetic testing of inherited arrhythmias. Pediatric Cardiology, 33(6), 980–987.PubMedCrossRef
33.
go back to reference Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine, 363(2), 166–176.PubMedCrossRef Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine, 363(2), 166–176.PubMedCrossRef
34.
go back to reference Pfeufer, A., Sanna, S., Arking, D. E., Muller, M., Gateva, V., Fuchsberger, C., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nature Genetics, 41(4), 407–414.PubMedCrossRef Pfeufer, A., Sanna, S., Arking, D. E., Muller, M., Gateva, V., Fuchsberger, C., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nature Genetics, 41(4), 407–414.PubMedCrossRef
35.
go back to reference Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I., Yin, X., Estrada, K., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nature Genetics, 41(4), 399–406.PubMedCrossRef Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I., Yin, X., Estrada, K., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nature Genetics, 41(4), 399–406.PubMedCrossRef
36.
go back to reference Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton-Cheh, C., Ikeda, M., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38(6), 644–651.PubMedCrossRef Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton-Cheh, C., Ikeda, M., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38(6), 644–651.PubMedCrossRef
37.
go back to reference Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., et al. (2009). NOS1AP is a genetic modifier of the long-QT syndrome. Circulation, 120(17), 1657–1663.PubMedCrossRef Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., et al. (2009). NOS1AP is a genetic modifier of the long-QT syndrome. Circulation, 120(17), 1657–1663.PubMedCrossRef
38.
go back to reference Tomas, M., Napolitano, C., De Giuli, L., Bloise, R., Subirana, I., Malovini, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of Cardiology, 55(24), 2745–2752.PubMedCrossRef Tomas, M., Napolitano, C., De Giuli, L., Bloise, R., Subirana, I., Malovini, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of Cardiology, 55(24), 2745–2752.PubMedCrossRef
39.
go back to reference Lalonde, E., Albrecht, S., Ha, K. C., Jacob, K., Bolduc, N., Polychronakos, C., et al. (2010). Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Human Mutation, 31(8), 918–923.PubMedCrossRef Lalonde, E., Albrecht, S., Ha, K. C., Jacob, K., Bolduc, N., Polychronakos, C., et al. (2010). Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Human Mutation, 31(8), 918–923.PubMedCrossRef
40.
go back to reference Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 42(9), 790–793.PubMedCrossRef Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 42(9), 790–793.PubMedCrossRef
41.
go back to reference Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., et al. (2010). Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics, 42(1), 30–35.PubMedCrossRef Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., et al. (2010). Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics, 42(1), 30–35.PubMedCrossRef
42.
go back to reference Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–9.PubMedCrossRef Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–9.PubMedCrossRef
43.
go back to reference Koboldt, D. C., Ding, L., Mardis, E. R., & Wilson, R. K. (2010). Challenges of sequencing human genomes. Briefings in Bioinformatics, 11(5), 484–498.PubMedCrossRef Koboldt, D. C., Ding, L., Mardis, E. R., & Wilson, R. K. (2010). Challenges of sequencing human genomes. Briefings in Bioinformatics, 11(5), 484–498.PubMedCrossRef
44.
go back to reference Jons, C., O.-Uchi, J., O.-Uchi, J., Moss, A. J., Reumann, M., Rice, J. J., Goldenberg, I., et al. (2011). Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. Science Translational Medicine, 3(76), 76ra28.PubMedCrossRef Jons, C., O.-Uchi, J., O.-Uchi, J., Moss, A. J., Reumann, M., Rice, J. J., Goldenberg, I., et al. (2011). Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. Science Translational Medicine, 3(76), 76ra28.PubMedCrossRef
45.
go back to reference Goldenberg, I., & Moss, A. J. (2008). Long QT syndrome. Journal of the American College of Cardiology, 51(24), 2291–300.PubMedCrossRef Goldenberg, I., & Moss, A. J. (2008). Long QT syndrome. Journal of the American College of Cardiology, 51(24), 2291–300.PubMedCrossRef
46.
go back to reference Priori, S. G., Schwartz, P. J., Napolitano, C., Bloise, R., Ronchetti, E., Grillo, M., et al. (2003). Risk stratification in the long-QT syndrome. The New England Journal of Medicine, 348(19), 1866–74.PubMedCrossRef Priori, S. G., Schwartz, P. J., Napolitano, C., Bloise, R., Ronchetti, E., Grillo, M., et al. (2003). Risk stratification in the long-QT syndrome. The New England Journal of Medicine, 348(19), 1866–74.PubMedCrossRef
47.
go back to reference Zareba, W., Moss, A. J., Locati, E. H., Lehmann, M. H., Peterson, D. R., Hall, W. J., et al. (2003). Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 42(1), 103–1099.PubMedCrossRef Zareba, W., Moss, A. J., Locati, E. H., Lehmann, M. H., Peterson, D. R., Hall, W. J., et al. (2003). Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 42(1), 103–1099.PubMedCrossRef
48.
go back to reference Costa, J., Lopes, C. M., Barsheshet, A., Moss, A. J., Migdalovich, D., Ouellet, G., et al. (2012). Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart Rhythm, 9(6), 892–898.PubMedCrossRef Costa, J., Lopes, C. M., Barsheshet, A., Moss, A. J., Migdalovich, D., Ouellet, G., et al. (2012). Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart Rhythm, 9(6), 892–898.PubMedCrossRef
49.
go back to reference Migdalovich, D., Moss, A. J., Lopes, C. M., Costa, J., Ouellet, G., Barsheshet, A., et al. (2011). Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm, 8(10), 1537–1543.PubMedCrossRef Migdalovich, D., Moss, A. J., Lopes, C. M., Costa, J., Ouellet, G., Barsheshet, A., et al. (2011). Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm, 8(10), 1537–1543.PubMedCrossRef
50.
go back to reference Moss, A. J., Shimizu, W., Wilde, A. A., Towbin, J. A., Zareba, W., Robinson, J. L., et al. (2007). Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation, 115(19), 2481–2489.PubMedCrossRef Moss, A. J., Shimizu, W., Wilde, A. A., Towbin, J. A., Zareba, W., Robinson, J. L., et al. (2007). Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation, 115(19), 2481–2489.PubMedCrossRef
51.
go back to reference Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M., et al. (2004). Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. Journal of the American College of Cardiology, 44(1), 117–125.PubMedCrossRef Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M., et al. (2004). Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. Journal of the American College of Cardiology, 44(1), 117–125.PubMedCrossRef
52.
go back to reference Moss, A. J., Zareba, W., Kaufman, E. S., Gartman, E., Peterson, D. R., Benhorin, J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation, 105(7), 794–799.PubMedCrossRef Moss, A. J., Zareba, W., Kaufman, E. S., Gartman, E., Peterson, D. R., Benhorin, J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation, 105(7), 794–799.PubMedCrossRef
53.
go back to reference Shimizu, W., Moss, A. J., Wilde, A. A., Towbin, J. A., Ackerman, M. J., January, C. T., et al. (2009). Genotype-phenotype aspects of type 2 long QT syndrome. Journal of the American College of Cardiology, 54(22), 2052–2062.PubMedCrossRef Shimizu, W., Moss, A. J., Wilde, A. A., Towbin, J. A., Ackerman, M. J., January, C. T., et al. (2009). Genotype-phenotype aspects of type 2 long QT syndrome. Journal of the American College of Cardiology, 54(22), 2052–2062.PubMedCrossRef
54.
go back to reference Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., Jin, O. U., Gu, Y., et al. (2012). In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. Journal of the American College of Cardiology, 60(21), 2182–2191.PubMedCrossRef Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., Jin, O. U., Gu, Y., et al. (2012). In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. Journal of the American College of Cardiology, 60(21), 2182–2191.PubMedCrossRef
55.
go back to reference Moss, A. J., & Goldenberg, I. (2008). Importance of knowing the genotype and the specific mutation when managing patients with long QT syndrome. Circulation. Arrhythmia and Electrophysiology, 1(3), 213–226. Discussion 226.PubMedCrossRef Moss, A. J., & Goldenberg, I. (2008). Importance of knowing the genotype and the specific mutation when managing patients with long QT syndrome. Circulation. Arrhythmia and Electrophysiology, 1(3), 213–226. Discussion 226.PubMedCrossRef
56.
go back to reference Archer, S. L., & Rusch, N. J. (2001). Potassium channels in cardiovascular biology (p. 932). New York: Springer.CrossRef Archer, S. L., & Rusch, N. J. (2001). Potassium channels in cardiovascular biology (p. 932). New York: Springer.CrossRef
57.
go back to reference Fernández-Ballester, G., Fernandez-Carvajal, A., González-Ros, J. M., & Ferrer-Montiel, A. (2011). Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics, 3(4), 932–953.CrossRef Fernández-Ballester, G., Fernandez-Carvajal, A., González-Ros, J. M., & Ferrer-Montiel, A. (2011). Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics, 3(4), 932–953.CrossRef
58.
go back to reference Anson, B. D., Kolaja, K. L., & Kamp, T. J. (2011). Opportunities for use of human iPS cells in predictive toxicology. Clinical Pharmacology and Therapeutics, 89(5), 754–8.PubMedCrossRef Anson, B. D., Kolaja, K. L., & Kamp, T. J. (2011). Opportunities for use of human iPS cells in predictive toxicology. Clinical Pharmacology and Therapeutics, 89(5), 754–8.PubMedCrossRef
59.
go back to reference Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–409.PubMedCrossRef Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–409.PubMedCrossRef
60.
go back to reference Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.PubMedCrossRef Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.PubMedCrossRef
61.
go back to reference Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.PubMedCrossRef Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.PubMedCrossRef
62.
go back to reference Priori, S. G. (2011). Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circulation Research, 109(8), 822–824.PubMedCrossRef Priori, S. G. (2011). Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circulation Research, 109(8), 822–824.PubMedCrossRef
63.
go back to reference Chiang, C. E., & Roden, D. M. (2000). The long QT syndromes: genetic basis and clinical implications. Journal of the American College of Cardiology, 36(1), 1–12.PubMedCrossRef Chiang, C. E., & Roden, D. M. (2000). The long QT syndromes: genetic basis and clinical implications. Journal of the American College of Cardiology, 36(1), 1–12.PubMedCrossRef
64.
go back to reference Schwartz, P. J. (2011). Pharmacological and non-pharmacological management of the congenital long QT syndrome: the rationale. Pharmacology and Therapeutics, 131(1), 171–177.PubMedCrossRef Schwartz, P. J. (2011). Pharmacological and non-pharmacological management of the congenital long QT syndrome: the rationale. Pharmacology and Therapeutics, 131(1), 171–177.PubMedCrossRef
65.
go back to reference Schwartz, P. J., Priori, S. G., Spazzolini, C., Moss, A. J., Vincent, G. M., Napolitano, C., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103(1), 89–95.PubMedCrossRef Schwartz, P. J., Priori, S. G., Spazzolini, C., Moss, A. J., Vincent, G. M., Napolitano, C., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103(1), 89–95.PubMedCrossRef
66.
go back to reference Schwartz, P. J. (1985). Idiopathic long QT syndrome: progress and questions. American Heart Journal, 109(2), 399–411.PubMedCrossRef Schwartz, P. J. (1985). Idiopathic long QT syndrome: progress and questions. American Heart Journal, 109(2), 399–411.PubMedCrossRef
67.
go back to reference Eldar, M., Griffin, J. C., Van Hare, G. F., Witherell, C., Bhandari, A., Benditt, D., et al. (1992). Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. Journal of the American College of Cardiology, 20(4), 830–837.PubMedCrossRef Eldar, M., Griffin, J. C., Van Hare, G. F., Witherell, C., Bhandari, A., Benditt, D., et al. (1992). Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. Journal of the American College of Cardiology, 20(4), 830–837.PubMedCrossRef
68.
go back to reference Brugada, R., Hong, K., Cordeiro, J. M., & Dumaine, R. (2005). Short QT syndrome. CMAJ, 173(11), 1349–1354.PubMedCrossRef Brugada, R., Hong, K., Cordeiro, J. M., & Dumaine, R. (2005). Short QT syndrome. CMAJ, 173(11), 1349–1354.PubMedCrossRef
69.
go back to reference Benhorin, J., Taub, R., Goldmit, M., Kerem, B., Kass, R. S., Windman, I., et al. (2000). Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation, 101(14), 1698–1706.PubMedCrossRef Benhorin, J., Taub, R., Goldmit, M., Kerem, B., Kass, R. S., Windman, I., et al. (2000). Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation, 101(14), 1698–1706.PubMedCrossRef
70.
go back to reference Windle, J. R., Geletka, R. C., Moss, A. J., Zareba, W., & Atkins, D. L. (2001). Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A: DeltaKPQ mutation. Annals of Noninvasive Electrocardiology, 6(2), 153–158.PubMedCrossRef Windle, J. R., Geletka, R. C., Moss, A. J., Zareba, W., & Atkins, D. L. (2001). Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A: DeltaKPQ mutation. Annals of Noninvasive Electrocardiology, 6(2), 153–158.PubMedCrossRef
71.
go back to reference Ruan, Y., Liu, N., Bloise, R., Napolitano, C., & Priori, S. G. (2007). Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116(10), 1137–1144.PubMedCrossRef Ruan, Y., Liu, N., Bloise, R., Napolitano, C., & Priori, S. G. (2007). Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116(10), 1137–1144.PubMedCrossRef
72.
go back to reference Shimizu, W., Kurita, T., Matsuo, K., Suyama, K., Aihara, N., Kamakura, S., et al. (1998). Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation, 97(16), 1581–1588.PubMedCrossRef Shimizu, W., Kurita, T., Matsuo, K., Suyama, K., Aihara, N., Kamakura, S., et al. (1998). Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation, 97(16), 1581–1588.PubMedCrossRef
73.
go back to reference Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., et al. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021–1027.PubMedCrossRef Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., et al. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021–1027.PubMedCrossRef
74.
go back to reference Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. The FASEB Journal, 19(6), 577–579. Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. The FASEB Journal, 19(6), 577–579.
75.
go back to reference Peal, D. S., Mills, R. W., Lynch, S. N., Mosley, J. M., Lim, E., Ellinor, P. T., et al. (2011). Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation, 123(1), 23–30.PubMedCrossRef Peal, D. S., Mills, R. W., Lynch, S. N., Mosley, J. M., Lim, E., Ellinor, P. T., et al. (2011). Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation, 123(1), 23–30.PubMedCrossRef
76.
go back to reference Witchel, H. J. (2011). Drug-induced hERG block and long QT syndrome. Cardiovascular Therapeutics, 29(4), 251–259.PubMedCrossRef Witchel, H. J. (2011). Drug-induced hERG block and long QT syndrome. Cardiovascular Therapeutics, 29(4), 251–259.PubMedCrossRef
77.
go back to reference Reppel, M., Igelmund, P., Egert, U., Juchelka, F., Hescheler, J., & Drobinskaya, I. (2007). Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cellular Physiology and Biochemistry, 19(5–6), 213–224.PubMed Reppel, M., Igelmund, P., Egert, U., Juchelka, F., Hescheler, J., & Drobinskaya, I. (2007). Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cellular Physiology and Biochemistry, 19(5–6), 213–224.PubMed
78.
go back to reference Malan, D., Friedrichs, S., Fleischmann, B. K., & Sasse, P. (2011). Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circulation Research, 109(8), 841–847.PubMedCrossRef Malan, D., Friedrichs, S., Fleischmann, B. K., & Sasse, P. (2011). Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circulation Research, 109(8), 841–847.PubMedCrossRef
79.
go back to reference Newton-Cheh, C., & Shah, R. (2007). Genetic determinants of QT interval variation and sudden cardiac death. Current Opinion in Genetics and Development, 17(3), 213–221.PubMedCrossRef Newton-Cheh, C., & Shah, R. (2007). Genetic determinants of QT interval variation and sudden cardiac death. Current Opinion in Genetics and Development, 17(3), 213–221.PubMedCrossRef
80.
go back to reference Roden, D. M. (2005). An underrecognized challenge in evaluating postmarketing drug safety. Circulation, 111(3), 246–248.PubMedCrossRef Roden, D. M. (2005). An underrecognized challenge in evaluating postmarketing drug safety. Circulation, 111(3), 246–248.PubMedCrossRef
81.
82.
83.
go back to reference Kannankeril, P. J., Roden, D. M., Norris, K. J., Whalen, S. P., George, A. L., Jr., & Murray, K. T. (2005). Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm, 2(2), 134–140.PubMedCrossRef Kannankeril, P. J., Roden, D. M., Norris, K. J., Whalen, S. P., George, A. L., Jr., & Murray, K. T. (2005). Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm, 2(2), 134–140.PubMedCrossRef
84.
go back to reference Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250–269.PubMedCrossRef Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250–269.PubMedCrossRef
85.
go back to reference Napolitano, C., Schwartz, P. J., Brown, A. M., Ronchetti, E., Bianchi, L., Pinnavaia, A., et al. (2000). Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. Journal of Cardiovascular Electrophysiology, 11(6), 691–696.PubMedCrossRef Napolitano, C., Schwartz, P. J., Brown, A. M., Ronchetti, E., Bianchi, L., Pinnavaia, A., et al. (2000). Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. Journal of Cardiovascular Electrophysiology, 11(6), 691–696.PubMedCrossRef
86.
go back to reference Donger, C., Denjoy, I., Berthet, M., Neyroud, N., Cruaud, C., Bennaceur, M., et al. (1997). KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation, 96(9), 2778–2781.PubMedCrossRef Donger, C., Denjoy, I., Berthet, M., Neyroud, N., Cruaud, C., Bennaceur, M., et al. (1997). KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation, 96(9), 2778–2781.PubMedCrossRef
87.
go back to reference Piippo, K., Holmstrom, S., Swan, H., Viitasalo, M., Raatikka, M., Toivonen, L., et al. (2001). Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A. The American Journal of Cardiology, 87(7), 909–911.PubMedCrossRef Piippo, K., Holmstrom, S., Swan, H., Viitasalo, M., Raatikka, M., Toivonen, L., et al. (2001). Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A. The American Journal of Cardiology, 87(7), 909–911.PubMedCrossRef
88.
go back to reference Makita, N., Horie, M., Nakamura, T., Ai, T., Sasaki, K., Yokoi, H., et al. (2002). Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation, 106(10), 1269–1274.PubMedCrossRef Makita, N., Horie, M., Nakamura, T., Ai, T., Sasaki, K., Yokoi, H., et al. (2002). Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation, 106(10), 1269–1274.PubMedCrossRef
89.
go back to reference Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-QT syndrome: clinical impact. Circulation, 99(4), 529–533.PubMedCrossRef Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-QT syndrome: clinical impact. Circulation, 99(4), 529–533.PubMedCrossRef
90.
go back to reference Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P. C., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105(16), 1943–1948.PubMedCrossRef Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P. C., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105(16), 1943–1948.PubMedCrossRef
91.
go back to reference Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra, A., Beggs, A. H., et al. (2002). Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science, 297(5585), 1333–1336.PubMedCrossRef Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra, A., Beggs, A. H., et al. (2002). Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science, 297(5585), 1333–1336.PubMedCrossRef
92.
go back to reference Wei, J., Yang, I. C., Tapper, A. R., Murray, K. T., Viswanathan, P., & Rudy, Y. (1999). KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels [abstract]. Circulation, 100, 1–495.CrossRef Wei, J., Yang, I. C., Tapper, A. R., Murray, K. T., Viswanathan, P., & Rudy, Y. (1999). KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels [abstract]. Circulation, 100, 1–495.CrossRef
93.
go back to reference Sesti, F., Abbott, G. W., Wei, J., Murray, K. T., Saksena, S., Schwartz, P. J., et al. (2000). A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10613–10618.PubMedCrossRef Sesti, F., Abbott, G. W., Wei, J., Murray, K. T., Saksena, S., Schwartz, P. J., et al. (2000). A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10613–10618.PubMedCrossRef
94.
go back to reference Daly, A. K. (2012). Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annual Review of Pharmacology and Toxicology, 52, 21–35.PubMedCrossRef Daly, A. K. (2012). Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annual Review of Pharmacology and Toxicology, 52, 21–35.PubMedCrossRef
95.
go back to reference Volpi, S., Heaton, C., Mack, K., Hamilton, J. B., Lannan, R., Wolfgang, C. D., et al. (2009). Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Molecular Psychiatry, 14(11), 1024–1031.PubMedCrossRef Volpi, S., Heaton, C., Mack, K., Hamilton, J. B., Lannan, R., Wolfgang, C. D., et al. (2009). Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Molecular Psychiatry, 14(11), 1024–1031.PubMedCrossRef
96.
go back to reference Jamshidi, Y., Nolte, I. M., Dalageorgou, C., Zheng, D., Johnson, T., Bastiaenen, R., et al. (2012). Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. Journal of the American College of Cardiology, 60(9), 841–850.PubMedCrossRef Jamshidi, Y., Nolte, I. M., Dalageorgou, C., Zheng, D., Johnson, T., Bastiaenen, R., et al. (2012). Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. Journal of the American College of Cardiology, 60(9), 841–850.PubMedCrossRef
97.
go back to reference van Noord, C., Aarnoudse, A. J., Eijgelsheim, M., Sturkenboom, M. C., Straus, S. M., Hofman, A., et al. (2009). Calcium channel blockers, NOS1AP, and heart-rate-corrected QT prolongation. Pharmacogenetics and Genomics, 19(4), 260–266.PubMedCrossRef van Noord, C., Aarnoudse, A. J., Eijgelsheim, M., Sturkenboom, M. C., Straus, S. M., Hofman, A., et al. (2009). Calcium channel blockers, NOS1AP, and heart-rate-corrected QT prolongation. Pharmacogenetics and Genomics, 19(4), 260–266.PubMedCrossRef
98.
go back to reference Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.PubMedCrossRef Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.PubMedCrossRef
99.
go back to reference Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., McLaren, P. J., et al. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics, 44(6), 623–630.PubMedCrossRef Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., McLaren, P. J., et al. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics, 44(6), 623–630.PubMedCrossRef
100.
go back to reference Gowda, R. M., Khan, I. A., Wilbur, S. L., Vasavada, B. C., & Sacchi, T. J. (2004). Torsade de pointes: the clinical considerations. International Journal of Cardiology, 96(1), 1–6.PubMedCrossRef Gowda, R. M., Khan, I. A., Wilbur, S. L., Vasavada, B. C., & Sacchi, T. J. (2004). Torsade de pointes: the clinical considerations. International Journal of Cardiology, 96(1), 1–6.PubMedCrossRef
101.
go back to reference Gowda, R. M., Khan, I. A., Punukollu, G., Vasavada, B. C., Sacchi, T. J., & Wilbur, S. L. (2004). Female preponderance in ibutilide-induced torsade de pointes. International Journal of Cardiology, 95(2–3), 219–222.PubMedCrossRef Gowda, R. M., Khan, I. A., Punukollu, G., Vasavada, B. C., Sacchi, T. J., & Wilbur, S. L. (2004). Female preponderance in ibutilide-induced torsade de pointes. International Journal of Cardiology, 95(2–3), 219–222.PubMedCrossRef
102.
go back to reference Heist, E. K., & Ruskin, J. N. (2005). Drug-induced proarrhythmia and use of QTc-prolonging agents: clues for clinicians. Heart Rhythm, 2(2), 1–8.CrossRef Heist, E. K., & Ruskin, J. N. (2005). Drug-induced proarrhythmia and use of QTc-prolonging agents: clues for clinicians. Heart Rhythm, 2(2), 1–8.CrossRef
103.
go back to reference Viskin, S., Justo, D., Halkin, A., & Zeltser, D. (2003). Long QT syndrome caused by noncardiac drugs. Progress in Cardiovascular Diseases, 45(5), 415–427.PubMed Viskin, S., Justo, D., Halkin, A., & Zeltser, D. (2003). Long QT syndrome caused by noncardiac drugs. Progress in Cardiovascular Diseases, 45(5), 415–427.PubMed
104.
go back to reference Yap, Y. G., & Camm, A. J. (2003). Drug induced QT prolongation and torsades de pointes. Heart, 89(11), 1363–1372.PubMedCrossRef Yap, Y. G., & Camm, A. J. (2003). Drug induced QT prolongation and torsades de pointes. Heart, 89(11), 1363–1372.PubMedCrossRef
105.
go back to reference Gupta, A., Lawrence, A. T., Krishnan, K., Kavinsky, C. J., & Trohman, R. G. (2007). Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. American Heart Journal, 153(6), 891–899.PubMedCrossRef Gupta, A., Lawrence, A. T., Krishnan, K., Kavinsky, C. J., & Trohman, R. G. (2007). Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. American Heart Journal, 153(6), 891–899.PubMedCrossRef
106.
go back to reference Kannankeril, P. J., & Roden, D. M. (2007). Drug-induced long QT and torsade de pointes: recent advances. Current Opinion in Cardiology, 22(1), 39–43.PubMedCrossRef Kannankeril, P. J., & Roden, D. M. (2007). Drug-induced long QT and torsade de pointes: recent advances. Current Opinion in Cardiology, 22(1), 39–43.PubMedCrossRef
107.
go back to reference Johnson, J. A., Cavallari, L. H., Beitelshees, A. L., Lewis, J. P., Shuldiner, A. R., & Roden, D. M. (2011). Pharmacogenomics: application to the management of cardiovascular disease. Clinical Pharmacology and Therapeutics, 90(4), 519–531.PubMedCrossRef Johnson, J. A., Cavallari, L. H., Beitelshees, A. L., Lewis, J. P., Shuldiner, A. R., & Roden, D. M. (2011). Pharmacogenomics: application to the management of cardiovascular disease. Clinical Pharmacology and Therapeutics, 90(4), 519–531.PubMedCrossRef
108.
go back to reference Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.PubMed Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.PubMed
109.
go back to reference Yang, T., Snyders, D., & Roden, D. M. (2001). Drug block of I(kr): model systems and relevance to human arrhythmias. Journal of Cardiovascular Pharmacology, 38(5), 737–744.PubMedCrossRef Yang, T., Snyders, D., & Roden, D. M. (2001). Drug block of I(kr): model systems and relevance to human arrhythmias. Journal of Cardiovascular Pharmacology, 38(5), 737–744.PubMedCrossRef
110.
go back to reference Shah, R. R. (2005). Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1460), 1617–1638.PubMedCrossRef Shah, R. R. (2005). Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1460), 1617–1638.PubMedCrossRef
111.
go back to reference Shah, R. R. (2005). Drug-induced QT interval prolongation—regulatory guidance and perspectives on hERG channel studies. Novartis Foundation Symposium, 266, 251–280. Discussion 280–5.PubMedCrossRef Shah, R. R. (2005). Drug-induced QT interval prolongation—regulatory guidance and perspectives on hERG channel studies. Novartis Foundation Symposium, 266, 251–280. Discussion 280–5.PubMedCrossRef
112.
go back to reference Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715.PubMedCrossRef Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715.PubMedCrossRef
Metadata
Title
Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives
Authors
Saagar Mahida
Andrew J. Hogarth
Campbell Cowan
Muzahir H. Tayebjee
Lee N. Graham
Christopher B. Pepper
Publication date
01-06-2013
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 1/2013
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-013-9779-5

Other articles of this Issue 1/2013

Journal of Interventional Cardiac Electrophysiology 1/2013 Go to the issue