Skip to main content
Top
Published in: International Ophthalmology 12/2019

01-12-2019 | Diabetic Retinopathy | Review

Choroidal binarization analysis: clinical application

Authors: Sara Crisostomo, Joana Cardigos, Diogo Hipólito Fernandes, Maria Elisa Luís, Ricardo Figueiredo, Nuno Moura-Coelho, João Paulo Cunha, Luís Abegão Pinto, Joana Ferreira

Published in: International Ophthalmology | Issue 12/2019

Login to get access

Abstract

Introduction

Image processing of optical coherence tomography scans through binarization techniques represent a non-invasive way to separately asses and measure choroidal components, in vivo. In this review, we systematically search the scientific literature regarding binarization studies published so far.

Methods

A systematic research was conducted at PubMed database, including English literature articles for all of the following terms in various combinations: binarization, choroid/al, enhanced depth spectral domain/swept source optic coherence tomography, and latest publications up to November 2018 were reviewed.

Results

Thirty-seven articles were included and analyzed regarding studied disease, binarization method, studied variables, and outcomes. Most of the studies have focused on the more common retinal pathologies, such as age-related macular degeneration, central serous chorioretinopathy and diabetic retinopathy but binarization techniques have also been applied to the study of choroidal characteristics in ocular inflammatory diseases, corneal dystrophies and in postsurgical follow-up. Advantages and disadvantages of binarization techniques are also discussed.

Conclusion

Binarization of choroidal images seems to represent a promising approach to study choroid subcomponents in an increasingly detailed manner.
Literature
2.
go back to reference Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29CrossRefPubMed Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29CrossRefPubMed
5.
go back to reference Imamura Y, Fujiwara T, Margolis RON, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRefPubMed Imamura Y, Fujiwara T, Margolis RON, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRefPubMed
10.
13.
16.
go back to reference Bernsen J (1986) Dynamic thresholding of grey-level images. In: Proceedings of the international conference on pattern recognition, pp 1251–1255 Bernsen J (1986) Dynamic thresholding of grey-level images. In: Proceedings of the international conference on pattern recognition, pp 1251–1255
17.
go back to reference Niblack W (1986) An introduction to digital image processing, vol 34. Prentice-Hall, Englewood Cliffs Niblack W (1986) An introduction to digital image processing, vol 34. Prentice-Hall, Englewood Cliffs
19.
go back to reference Agrawal R, Salman M, Tan KA et al (2016) Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11:e0146344CrossRefPubMedPubMedCentral Agrawal R, Salman M, Tan KA et al (2016) Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11:e0146344CrossRefPubMedPubMedCentral
25.
go back to reference Vupparaboina KK, Richhariya A, Chhablani J, Jana S (2017) Optical coherence tomography imaging: automated binarization of choroid for stromal-luminal analysis. In: 2016 International conference on signal and information processing, IConSIP 2016 Vupparaboina KK, Richhariya A, Chhablani J, Jana S (2017) Optical coherence tomography imaging: automated binarization of choroid for stromal-luminal analysis. In: 2016 International conference on signal and information processing, IConSIP 2016
26.
go back to reference Mahajan NR, Donapati RCR, Channappayya SS et al (2013) An automated algorithm for blood vessel count and area measurement in 2-D choroidal scan images. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp 3355–3358 Mahajan NR, Donapati RCR, Channappayya SS et al (2013) An automated algorithm for blood vessel count and area measurement in 2-D choroidal scan images. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp 3355–3358
28.
go back to reference Sonoda S, Sakamoto T, Yamashita T et al (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123–1131 (e1) CrossRefPubMed Sonoda S, Sakamoto T, Yamashita T et al (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123–1131 (e1) CrossRefPubMed
29.
go back to reference Gupta P, Jing T, Marziliano P et al (2015) Distribution and determinants of choroidal thickness and volume using automated segmentation software in a population-based study. Am J Ophthalmol 159:293–301 (e3) CrossRefPubMed Gupta P, Jing T, Marziliano P et al (2015) Distribution and determinants of choroidal thickness and volume using automated segmentation software in a population-based study. Am J Ophthalmol 159:293–301 (e3) CrossRefPubMed
31.
go back to reference Wei X, Ting DSW, Ng WY et al (2016) Choroidal vascularity index—a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37(6):1120–1125CrossRef Wei X, Ting DSW, Ng WY et al (2016) Choroidal vascularity index—a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37(6):1120–1125CrossRef
32.
go back to reference Bakthavatsalam M, Ng DSC, Lai FHP et al (2017) Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images. Graefe’s Arch Clin Exp Ophthalmol 255:935–943. https://doi.org/10.1007/s00417-017-3591-3 CrossRef Bakthavatsalam M, Ng DSC, Lai FHP et al (2017) Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images. Graefe’s Arch Clin Exp Ophthalmol 255:935–943. https://​doi.​org/​10.​1007/​s00417-017-3591-3 CrossRef
44.
go back to reference Gallego-Pinazo R, Dolz-Marco R, Gómez-Ulla F et al (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3:111–115PubMedPubMedCentral Gallego-Pinazo R, Dolz-Marco R, Gómez-Ulla F et al (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3:111–115PubMedPubMedCentral
46.
go back to reference Balaratnasingam C, Lee WK, Koizumi H et al (2016) Polypoidal choroidal vasculopathy a distinct disease or manifestation of many? Retina 36:1–8CrossRefPubMed Balaratnasingam C, Lee WK, Koizumi H et al (2016) Polypoidal choroidal vasculopathy a distinct disease or manifestation of many? Retina 36:1–8CrossRefPubMed
49.
go back to reference Gupta P, Shu D, Ting WEI et al (2017) Detailed characterization of choroidal morphologic and vascular features in age-related macular degeneration and polypoidal choroidal. Retina 37:2269–2280CrossRefPubMed Gupta P, Shu D, Ting WEI et al (2017) Detailed characterization of choroidal morphologic and vascular features in age-related macular degeneration and polypoidal choroidal. Retina 37:2269–2280CrossRefPubMed
58.
go back to reference Branchini LA, Adhi M, Regatieri CV et al (2013) Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120:1901–1908CrossRefPubMed Branchini LA, Adhi M, Regatieri CV et al (2013) Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120:1901–1908CrossRefPubMed
60.
go back to reference Wei WB, Xu L, Jonas JB et al (2012) Subfoveal choroidal thickness: the beijing eye study. Ophthalmology 120:175–180CrossRefPubMed Wei WB, Xu L, Jonas JB et al (2012) Subfoveal choroidal thickness: the beijing eye study. Ophthalmology 120:175–180CrossRefPubMed
61.
go back to reference Ferreira J, Vicente A, Anjos R et al (2015) Choroidal thickness in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci 56:4678 Ferreira J, Vicente A, Anjos R et al (2015) Choroidal thickness in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci 56:4678
62.
go back to reference Tavares Ferreira J, Proença R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a Longitudinal Study. Am J Ophthalmol 176:15–25CrossRefPubMed Tavares Ferreira J, Proença R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a Longitudinal Study. Am J Ophthalmol 176:15–25CrossRefPubMed
64.
go back to reference Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53:6017–6024CrossRefPubMed Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53:6017–6024CrossRefPubMed
70.
go back to reference Tan K, Laude A, Yip V et al (2016) Choroidal vascularity index—a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616CrossRefPubMed Tan K, Laude A, Yip V et al (2016) Choroidal vascularity index—a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616CrossRefPubMed
73.
go back to reference Read RW, Holland GN, Rao NA et al (2001) Revised diagnostic criteria for Vogt–Koyanagi–Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131:647–652CrossRefPubMed Read RW, Holland GN, Rao NA et al (2001) Revised diagnostic criteria for Vogt–Koyanagi–Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131:647–652CrossRefPubMed
74.
go back to reference Moorthy RS, Inomata H, Rao NA (1995) MAJOR REVIEW: Vogt–Koyanagi–Harada Syndrome. Surv Ophthalmol 39(4):265–292CrossRefPubMed Moorthy RS, Inomata H, Rao NA (1995) MAJOR REVIEW: Vogt–Koyanagi–Harada Syndrome. Surv Ophthalmol 39(4):265–292CrossRefPubMed
79.
go back to reference Jaisankar D, Raman R, Sharma HR et al (2017) Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt–Koyanagi–Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm 12:1–9 Jaisankar D, Raman R, Sharma HR et al (2017) Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt–Koyanagi–Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm 12:1–9
80.
go back to reference Liu S, Du L, Zhou Q et al (2017) The Choroidal Vascularity Index decreases and choroidal thickness increases in Vogt–Koyanagi–Harada disease patients during a recurrent anterior uveitis attack. Ocul Immunol Inflamm 3948:1–7 Liu S, Du L, Zhou Q et al (2017) The Choroidal Vascularity Index decreases and choroidal thickness increases in Vogt–Koyanagi–Harada disease patients during a recurrent anterior uveitis attack. Ocul Immunol Inflamm 3948:1–7
81.
83.
go back to reference Agarwal A, Agrawal R, Khandelwal N et al (2017) Choroidal structural changes in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm 26(6):838–844CrossRefPubMed Agarwal A, Agrawal R, Khandelwal N et al (2017) Choroidal structural changes in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm 26(6):838–844CrossRefPubMed
85.
go back to reference Saw SM, Gazzard G, Shin-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391CrossRefPubMed Saw SM, Gazzard G, Shin-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391CrossRefPubMed
88.
go back to reference Nishida Y, Fujiwara T, Imamura Y et al (2012) Choroidal thickness and visual acuity in highly myopic eyes. Retina 32:1229–1236CrossRefPubMed Nishida Y, Fujiwara T, Imamura Y et al (2012) Choroidal thickness and visual acuity in highly myopic eyes. Retina 32:1229–1236CrossRefPubMed
96.
go back to reference Agrawal R, Wei X, Goud A et al (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95(8):e770–e775CrossRefPubMed Agrawal R, Wei X, Goud A et al (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95(8):e770–e775CrossRefPubMed
Metadata
Title
Choroidal binarization analysis: clinical application
Authors
Sara Crisostomo
Joana Cardigos
Diogo Hipólito Fernandes
Maria Elisa Luís
Ricardo Figueiredo
Nuno Moura-Coelho
João Paulo Cunha
Luís Abegão Pinto
Joana Ferreira
Publication date
01-12-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 12/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-019-01122-8

Other articles of this Issue 12/2019

International Ophthalmology 12/2019 Go to the issue