Skip to main content
Top
Published in: International Ophthalmology 1/2017

01-02-2017 | Original Paper

Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking

Authors: Manuela Lanzini, Claudia Curcio, Eberhard Spoerl, Roberta Calienno, Alessandra Mastropasqua, Martina Colasante, Rodolfo Mastropasqua, Mario Nubile, Leonardo Mastropasqua

Published in: International Ophthalmology | Issue 1/2017

Login to get access

Abstract

The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm2 UVA (group 4) and three for 9 min at 10 mW/cm2 UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress–strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm2 irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.
Literature
1.
go back to reference Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627CrossRefPubMed Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627CrossRefPubMed
2.
go back to reference Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116:369–378CrossRefPubMed Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116:369–378CrossRefPubMed
3.
go back to reference Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T (2006) Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A rays induced cross-linking of corneal collagen: preliminary refractive results in an Italian study. J Cataract Refract Surg 32:837–845CrossRefPubMed Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T (2006) Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A rays induced cross-linking of corneal collagen: preliminary refractive results in an Italian study. J Cataract Refract Surg 32:837–845CrossRefPubMed
4.
go back to reference Lamy R, Netto CF, Reis RG, Procopio B, Porco TC, Stewart JM, Dantas AM, Moraes HV Jr (2013) Effects of corneal cross-linking on contrast sensitivity, visual acuity, and corneal topography in patients with keratoconus. Cornea 32:591–596CrossRefPubMed Lamy R, Netto CF, Reis RG, Procopio B, Porco TC, Stewart JM, Dantas AM, Moraes HV Jr (2013) Effects of corneal cross-linking on contrast sensitivity, visual acuity, and corneal topography in patients with keratoconus. Cornea 32:591–596CrossRefPubMed
5.
go back to reference Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 30:2360–2367CrossRef Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 30:2360–2367CrossRef
6.
go back to reference McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, Dedeic Z, Dionne MJ, Clement EM, Conrad GW (2010) Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci 51:129–138CrossRefPubMedPubMedCentral McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, Dedeic Z, Dionne MJ, Clement EM, Conrad GW (2010) Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci 51:129–138CrossRefPubMedPubMedCentral
7.
go back to reference Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, Mastropasqua R, Lanzini M (2014) Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol 157:623–630CrossRefPubMed Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, Mastropasqua R, Lanzini M (2014) Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol 157:623–630CrossRefPubMed
8.
go back to reference Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, Mastropasqua A, Nubile M (2014) Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Visl Sci 55:2526–2533CrossRef Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, Mastropasqua A, Nubile M (2014) Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Visl Sci 55:2526–2533CrossRef
9.
go back to reference Prasad R, Koul V (2012) Transdermal delivery of methotrexate: past, present and future prospects. Ther Deliv 3:315–325CrossRefPubMed Prasad R, Koul V (2012) Transdermal delivery of methotrexate: past, present and future prospects. Ther Deliv 3:315–325CrossRefPubMed
10.
go back to reference Dubinsky RM, Kabbani H, El-Chami Z, Boutwell C, Ali H (2004) Practice parameter: treatment of post-herpetic neuralgia: an evidence-based report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 63:959–965CrossRefPubMed Dubinsky RM, Kabbani H, El-Chami Z, Boutwell C, Ali H (2004) Practice parameter: treatment of post-herpetic neuralgia: an evidence-based report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 63:959–965CrossRefPubMed
11.
go back to reference Gomez I, Szabò A, Pap L Jr, Pap L, Boda K, Szekanecz Z (2012) In vivo calcium and phosphate iontophoresis for the topical treatment of osteoporosis. Phys Ther 92:289–297CrossRefPubMed Gomez I, Szabò A, Pap L Jr, Pap L, Boda K, Szekanecz Z (2012) In vivo calcium and phosphate iontophoresis for the topical treatment of osteoporosis. Phys Ther 92:289–297CrossRefPubMed
13.
go back to reference Frucht-Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat-Binstock M, Domb A (2006) Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 25:1182–1186CrossRefPubMed Frucht-Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat-Binstock M, Domb A (2006) Iontophoretic treatment of experimental pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 25:1182–1186CrossRefPubMed
14.
go back to reference Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48:4038–4043CrossRefPubMed Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48:4038–4043CrossRefPubMed
15.
go back to reference Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal disease. Prog Retin Eye Res 23:253–281CrossRefPubMed Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal disease. Prog Retin Eye Res 23:253–281CrossRefPubMed
16.
go back to reference Bikbova G, Bikbov M (2014) Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol 92:30–34CrossRef Bikbova G, Bikbov M (2014) Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol 92:30–34CrossRef
17.
go back to reference Vinciguerra P, Rechichi M, Rosetta P, Romano MR, Mastropasqua L, Scorcia V, Azzolini C, Vinciguerra R (2013) High fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin penetration. J Refract Surg 29:376–377CrossRefPubMed Vinciguerra P, Rechichi M, Rosetta P, Romano MR, Mastropasqua L, Scorcia V, Azzolini C, Vinciguerra R (2013) High fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin penetration. J Refract Surg 29:376–377CrossRefPubMed
18.
go back to reference Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S (2013) Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology 120:1515–1520CrossRefPubMed Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S (2013) Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology 120:1515–1520CrossRefPubMed
19.
go back to reference Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A (2009) Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 35:893–899CrossRefPubMed Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A (2009) Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 35:893–899CrossRefPubMed
20.
go back to reference Mastropasqua L, Nubile M, Lanzini M, Calienno R, Mastropasqua R, Agnifili L, Toto L (2013) Morphological modification of the cornea after standard and transepithelial corneal cross-linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea 32:855–861CrossRefPubMed Mastropasqua L, Nubile M, Lanzini M, Calienno R, Mastropasqua R, Agnifili L, Toto L (2013) Morphological modification of the cornea after standard and transepithelial corneal cross-linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea 32:855–861CrossRefPubMed
21.
go back to reference Raiskup F, Spoerl E (2013) Corneal crosslinking with riboflavin and ultraviolet AI principles. Ocul Surf 11:65–74CrossRefPubMed Raiskup F, Spoerl E (2013) Corneal crosslinking with riboflavin and ultraviolet AI principles. Ocul Surf 11:65–74CrossRefPubMed
22.
go back to reference Koppen C, Wouters K, Mathysen D, Rozema J, Tassignon MJ (2012) Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg 38:1000–1005CrossRefPubMed Koppen C, Wouters K, Mathysen D, Rozema J, Tassignon MJ (2012) Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg 38:1000–1005CrossRefPubMed
23.
go back to reference Wollensak G, Iomdina E (2009) Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35:540–546CrossRefPubMed Wollensak G, Iomdina E (2009) Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35:540–546CrossRefPubMed
24.
go back to reference Lamy R, Chan E, Zhang H, Salgaonkar VA, Good SD, Porco TC, Diederich CJ, Stewart JM (2013) Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci 54:5908–5912CrossRefPubMedPubMedCentral Lamy R, Chan E, Zhang H, Salgaonkar VA, Good SD, Porco TC, Diederich CJ, Stewart JM (2013) Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci 54:5908–5912CrossRefPubMedPubMedCentral
25.
go back to reference Cassagne M, Luarent C, Rodriques M, Galinier A, Spoerl E, Galicy SD, Soler V, Fourniè P, Malecaze F (2014) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci 57(2):594–603CrossRef Cassagne M, Luarent C, Rodriques M, Galinier A, Spoerl E, Galicy SD, Soler V, Fourniè P, Malecaze F (2014) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci 57(2):594–603CrossRef
26.
go back to reference Touboul D, Gennisson J, Nguyen TM, Robinet A, Roberts CJ, Tanter M, Grenier M (2014) Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci 55:1976–1984CrossRefPubMed Touboul D, Gennisson J, Nguyen TM, Robinet A, Roberts CJ, Tanter M, Grenier M (2014) Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci 55:1976–1984CrossRefPubMed
27.
go back to reference Vinciguerra P, Randleman JB, Romano V, Legrottaglie EF, Rosetta P, Camesasca FI, Piscopo R, Azzolini C, Vinciguerra R (2014) Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg 30:746–753CrossRefPubMed Vinciguerra P, Randleman JB, Romano V, Legrottaglie EF, Rosetta P, Camesasca FI, Piscopo R, Azzolini C, Vinciguerra R (2014) Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg 30:746–753CrossRefPubMed
28.
go back to reference Bottos KM, Schor P, Dreyfuss JL, Nader HB, Chamon W (2001) Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras de Oftalmol 74:348–351CrossRef Bottos KM, Schor P, Dreyfuss JL, Nader HB, Chamon W (2001) Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras de Oftalmol 74:348–351CrossRef
29.
go back to reference Mencucci R, Ambrosini S, Paladini I, Favuzza E, Boccalini C, Raugei G, Vannelli GB, Marini M (2015) Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas. Graefes Arch Clin Exp Ophthalmol 253:277–286CrossRefPubMed Mencucci R, Ambrosini S, Paladini I, Favuzza E, Boccalini C, Raugei G, Vannelli GB, Marini M (2015) Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas. Graefes Arch Clin Exp Ophthalmol 253:277–286CrossRefPubMed
30.
go back to reference Diakonis VF, Grentzelos MA, Tzatzarakis MN, Kankaria V, Karavitaki A, Karatapanis AE, Tsatsakis AM, Kymionis GD (2012) Riboflavin’s time-dependent degradation rate induced by ultraviolet A irradiation. Eur J Ophthalmol 22(7):S51–S56CrossRefPubMed Diakonis VF, Grentzelos MA, Tzatzarakis MN, Kankaria V, Karavitaki A, Karatapanis AE, Tsatsakis AM, Kymionis GD (2012) Riboflavin’s time-dependent degradation rate induced by ultraviolet A irradiation. Eur J Ophthalmol 22(7):S51–S56CrossRefPubMed
31.
go back to reference Lombardo M, Pucci G, Barberi R, Lombardo G (2015) Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg 41:446–459CrossRefPubMed Lombardo M, Pucci G, Barberi R, Lombardo G (2015) Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg 41:446–459CrossRefPubMed
32.
go back to reference Wollensak G, Aurich H, Pham DT, Wirbelauer C (2007) Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 33:516–521CrossRefPubMed Wollensak G, Aurich H, Pham DT, Wirbelauer C (2007) Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 33:516–521CrossRefPubMed
33.
go back to reference Cui L, Huxlin KR, Xu L, MacRae S, Knox WH (2011) High-resolution, noninvasive, two-photon fluorescence measurement of molecular concentrations in corneal tissue. Invest Ophthalmol Vis Sci 52:2556–2564CrossRefPubMedPubMedCentral Cui L, Huxlin KR, Xu L, MacRae S, Knox WH (2011) High-resolution, noninvasive, two-photon fluorescence measurement of molecular concentrations in corneal tissue. Invest Ophthalmol Vis Sci 52:2556–2564CrossRefPubMedPubMedCentral
34.
go back to reference Akhtar S, Almubrad T, Paladini I, Mencucci R (2013) Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: ultrastructural studies. Mol Vis 19:1526–1537PubMedPubMedCentral Akhtar S, Almubrad T, Paladini I, Mencucci R (2013) Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: ultrastructural studies. Mol Vis 19:1526–1537PubMedPubMedCentral
Metadata
Title
Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking
Authors
Manuela Lanzini
Claudia Curcio
Eberhard Spoerl
Roberta Calienno
Alessandra Mastropasqua
Martina Colasante
Rodolfo Mastropasqua
Mario Nubile
Leonardo Mastropasqua
Publication date
01-02-2017
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 1/2017
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-016-0266-8

Other articles of this Issue 1/2017

International Ophthalmology 1/2017 Go to the issue