Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2015

01-02-2015 | Cornea

Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas

Authors: Rita Mencucci, Stefano Ambrosini, Iacopo Paladini, Eleonora Favuzza, Carlotta Boccalini, Giulia Raugei, Gabriella Barbara Vannelli, Mirca Marini

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 2/2015

Login to get access

Abstract

Purpose

The purpose was to investigate the early modifications induced by collagen cross-linking by iontophoresis of riboflavin (ionto-CXL) in ex vivo human corneas by evaluating different protocols of UVA irradiation.

Methods

In this experimental study 46 ex vivo human corneas obtained from the Eye Bank of Mestre (Italy) were divided in different groups: six were utilized as control (CTL); eight were treated with ionto-CXL at 3 mW/cm2 power for 30 min (I-3); eight were treated with ionto-CXL at 10 mW/cm2 for 9 min (I-10); eight were treated with iontophoretic delivery of riboflavin only (I-0); eight were treated with the standard CXL at 3 mW/cm2 for 30 min (S-3); and eight were treated with CXL at 10 mW/cm2 for 9 min (S-10). All samples were evaluated by haematoxylin-eosin staining and immunohistochemical analysis using different markers (Connexin 43, CD34, Collagen I, TUNEL assay). Western blot analysis, utilizing Bax and Ki67 primary antibodies, for detection of keratocyte apoptosis and proliferation, respectively, was also performed.

Results

No endothelial damage was evidenced in the treated groups. In I-10 corneas the epithelial layers were not always well-preserved. Anterior stroma showed an uneven distribution and numerical reduction of keratocytes as well as increased apoptosis; a reduced subepithelial interweaving of collagen I fibers was observed. In S-3 and S-10 the changes induced by treatments were similar to I-10. I-3 and I-0 showed no significant changes with respect to the control group.

Conclusions

In the ionto-CXL at 10 mW/cm2 group occurred the main morphological and biomolecular changes. This experimental study suggests that iontophoresis can be considered a non-invasive potential delivery tool for riboflavin penetration in corneal stroma during CXL.
Literature
1.
go back to reference Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–7PubMedCrossRef Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–7PubMedCrossRef
2.
go back to reference Wollensak G, Spoerl E, Mazzotta C et al (2011) Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet a light. Br J Ophthalmol 95:876–80PubMedCrossRef Wollensak G, Spoerl E, Mazzotta C et al (2011) Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet a light. Br J Ophthalmol 95:876–80PubMedCrossRef
3.
go back to reference Zhang Y, Conrad AH, Conrad GW (2011) Effects of ultraviolet-a and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem 286:13011–22PubMedCentralPubMedCrossRef Zhang Y, Conrad AH, Conrad GW (2011) Effects of ultraviolet-a and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem 286:13011–22PubMedCentralPubMedCrossRef
4.
go back to reference Wollensak G (2006) Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 17:356–60PubMedCrossRef Wollensak G (2006) Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 17:356–60PubMedCrossRef
5.
go back to reference Mazzotta C, Traversi C, Baiocchi S et al (2008) Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 146:527–33PubMedCrossRef Mazzotta C, Traversi C, Baiocchi S et al (2008) Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 146:527–33PubMedCrossRef
6.
go back to reference Wollensak G, Spoerl E, Wilsch M, Seiler T (2004) Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 23:43–9PubMedCrossRef Wollensak G, Spoerl E, Wilsch M, Seiler T (2004) Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 23:43–9PubMedCrossRef
7.
go back to reference Mencucci R, Marini M, Paladini I et al (2010) Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol 38:49–56CrossRef Mencucci R, Marini M, Paladini I et al (2010) Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol 38:49–56CrossRef
8.
go back to reference Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet a light. J Cataract Refract Surg 32:279–83PubMedCrossRef Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet a light. J Cataract Refract Surg 32:279–83PubMedCrossRef
9.
go back to reference Wollensak G, Spoerl E, Seiler T (2003) Stress–strain measurements of human and porcine corneas after riboflavin ultraviolet- a-induced cross-linking. J Cataract Refract Surg 29:1780–5PubMedCrossRef Wollensak G, Spoerl E, Seiler T (2003) Stress–strain measurements of human and porcine corneas after riboflavin ultraviolet- a-induced cross-linking. J Cataract Refract Surg 29:1780–5PubMedCrossRef
10.
go back to reference O’Brart D, Kwong TQ, Patel P, McDonald RJ, O’Brart NA (2013) Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol 97:433–43PubMedCrossRef O’Brart D, Kwong TQ, Patel P, McDonald RJ, O’Brart NA (2013) Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol 97:433–43PubMedCrossRef
11.
12.
go back to reference Filippello M, Stagni E, Buccoliero D, Bomfiglio V, Avitabile T (2012) Transepithelial cross-linking in keratoconus patients: confocal analysis. Optom Vis Sci 89:1–7CrossRef Filippello M, Stagni E, Buccoliero D, Bomfiglio V, Avitabile T (2012) Transepithelial cross-linking in keratoconus patients: confocal analysis. Optom Vis Sci 89:1–7CrossRef
13.
go back to reference Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Paradiso AL (2012) Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol 22:81–8CrossRef Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Paradiso AL (2012) Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol 22:81–8CrossRef
14.
go back to reference Mencucci R, Paladini I, Sarchielli E, Favuzza E, Vannelli GB, Marini M (2013) Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas. Am J Ophthalmol 156:874–84PubMedCrossRef Mencucci R, Paladini I, Sarchielli E, Favuzza E, Vannelli GB, Marini M (2013) Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas. Am J Ophthalmol 156:874–84PubMedCrossRef
15.
go back to reference Filippello M, Stagni E, O’Brart D (2011) Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 38:283–91PubMedCrossRef Filippello M, Stagni E, O’Brart D (2011) Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 38:283–91PubMedCrossRef
16.
go back to reference Dixit N, Bali V, Baboota S, Ahuja A, Ali J (2007) Iontophoresis - an approach for controlled drug delivery: a review. Curr Drug Deliv 4:1–10PubMed Dixit N, Bali V, Baboota S, Ahuja A, Ali J (2007) Iontophoresis - an approach for controlled drug delivery: a review. Curr Drug Deliv 4:1–10PubMed
17.
go back to reference Lam TT, Edward DP, Zhu XA, Tso MO (1989) Transscleral iontophoresis of dexamethasone. Arch Ophthalmol 107:1368–71PubMedCrossRef Lam TT, Edward DP, Zhu XA, Tso MO (1989) Transscleral iontophoresis of dexamethasone. Arch Ophthalmol 107:1368–71PubMedCrossRef
18.
go back to reference Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J (2004) Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci 45:2543–8PubMedCrossRef Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J (2004) Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci 45:2543–8PubMedCrossRef
19.
go back to reference Bikbova G, Bikbov M (2014) Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol 92:e30–4PubMedCrossRef Bikbova G, Bikbov M (2014) Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol 92:e30–4PubMedCrossRef
20.
go back to reference DelMonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–98PubMedCrossRef DelMonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–98PubMedCrossRef
21.
go back to reference Kitada S, Krajewski S, Miyashita T, Krajewska M, Reed JC (1996) Gamma-radiation induces upregulation of bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–92PubMed Kitada S, Krajewski S, Miyashita T, Krajewska M, Reed JC (1996) Gamma-radiation induces upregulation of bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–92PubMed
22.
go back to reference Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–66PubMedCrossRef Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–66PubMedCrossRef
23.
go back to reference Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–22PubMedCrossRef Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–22PubMedCrossRef
24.
go back to reference Delgado-Charro MB (2009) Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. J Drug Deliv Sci Technol 19:75–88CrossRef Delgado-Charro MB (2009) Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. J Drug Deliv Sci Technol 19:75–88CrossRef
25.
go back to reference Behar-Cohen FF, El Aouni A, Gautier S et al (2002) Transscleral Coulomb- controlled iontophoresis of methylprednisolone into the rabbit eye: Influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res 74:51–9PubMedCrossRef Behar-Cohen FF, El Aouni A, Gautier S et al (2002) Transscleral Coulomb- controlled iontophoresis of methylprednisolone into the rabbit eye: Influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res 74:51–9PubMedCrossRef
26.
go back to reference Wirtz R (1908) Die ionentherapie in der augenheilkunde. Klin Monatsbl Augenheilkd 46:543–79 Wirtz R (1908) Die ionentherapie in der augenheilkunde. Klin Monatsbl Augenheilkd 46:543–79
27.
go back to reference Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–89PubMedCrossRef Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–89PubMedCrossRef
28.
go back to reference Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19:145–51PubMedCrossRef Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19:145–51PubMedCrossRef
29.
go back to reference Patane MA, Cohen A, From S, Torkildsen G, Welch D, Ousler GW 3rd (2011) Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial. Clin Ophthalmol 5:633–43PubMedCentralPubMed Patane MA, Cohen A, From S, Torkildsen G, Welch D, Ousler GW 3rd (2011) Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial. Clin Ophthalmol 5:633–43PubMedCentralPubMed
30.
go back to reference Vinciguerra P, Rechichi M, Rosetta P et al (2013) High fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin penetration. J Refract Surg 29:376–7PubMedCrossRef Vinciguerra P, Rechichi M, Rosetta P et al (2013) High fluence iontophoretic corneal collagen cross-linking: in vivo OCT imaging of riboflavin penetration. J Refract Surg 29:376–7PubMedCrossRef
31.
go back to reference Cassagne M, Laurent C, Rodrigues M et al (2014) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci Cassagne M, Laurent C, Rodrigues M et al (2014) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci
32.
go back to reference Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52:9048–52PubMedCrossRef Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52:9048–52PubMedCrossRef
33.
go back to reference Kanellopoulos AJ (2012) Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet a radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol 6:97–101PubMedCentralPubMedCrossRef Kanellopoulos AJ (2012) Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet a radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol 6:97–101PubMedCentralPubMedCrossRef
34.
go back to reference Jester JV, Petroll W, Cavanagh HD (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res 18:311–56PubMedCrossRef Jester JV, Petroll W, Cavanagh HD (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res 18:311–56PubMedCrossRef
Metadata
Title
Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas
Authors
Rita Mencucci
Stefano Ambrosini
Iacopo Paladini
Eleonora Favuzza
Carlotta Boccalini
Giulia Raugei
Gabriella Barbara Vannelli
Mirca Marini
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 2/2015
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2836-7

Other articles of this Issue 2/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2015 Go to the issue