Skip to main content
Top
Published in: Inflammation 6/2021

01-12-2021 | Liver Transplantation | Original Article

Granzyme B–Producing B Cells Function as a Feedback Loop for T Helper Cells in Liver Transplant Recipients with Acute Rejection

Authors: Wen-Li Xu, Ruo-lin Wang, Zhe Liu, Qiao Wu, Xian-Liang Li, Qiang He, Ji-Qiao Zhu

Published in: Inflammation | Issue 6/2021

Login to get access

Abstract

Granzyme B–producing B cells have been reportedly reported to be an important regulatory B cell subset in the pathogenesis of many diseases. However, its role in liver transplant recipients with acute rejection has never been well elucidated. Seventeen liver transplant recipients with acute rejection and 25 controls with stable liver function were enrolled in this study to determine the function of granzyme B–producing B cells via flow cytometry. Liver transplant recipients with acute rejection had higher expression of granzyme B in CD19+B cells when compared with controls. Following rejection, the granzyme B production was even elevated although comparison failed to reach significance. The percentages of CD27+granzyme B+CD19+B cells and CD138+granzyme B+CD19+B cells were lower than those of CD27granzyme B+CD19+B cells and CD138granzyme B+CD19+B cells in patients with acute rejection, respectively. While the production of CD27 and CD138 was not different between liver transplant recipients with and without acute rejection but increased expression of the two surface markers was observed following rejection. Furthermore, the frequency of granzyme B+CD19+B cells correlated with the level of alanine aminotransferase instead of tacrolimus. CD19+B cells could produce granzyme B when stimulated with IgG + IgM and CpG in the presence of the supernatant of activated CD4+CD25T cells. In return, granzyme B+CD19+B cells could suppress the proliferation of CD4+CD25T cells in a granzyme B– and contact-dependent manner. The increased expression of granzyme B in CD19+B cells from liver transplant recipients with acute rejection might function as a feedback loop for the activation of the CD4+CD25T cells.
Literature
1.
go back to reference Storni, T., T.M. Kundig, G. Senti, and P. Johansen. 2005. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57 (3): 333–355. Storni, T., T.M. Kundig, G. Senti, and P. Johansen. 2005. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57 (3): 333–355.
2.
go back to reference Boonyaratanakornkit, J., and J.J. Taylor. 2019. Techniques to study antigen-specific B cell responses. Front Immunol 10: 1694. Boonyaratanakornkit, J., and J.J. Taylor. 2019. Techniques to study antigen-specific B cell responses. Front Immunol 10: 1694.
3.
go back to reference Braza, F., J. Chesne, S. Castagnet, A. Magnan, and S. Brouard. 2014. Regulatory functions of B cells in allergic diseases. Allergy. 69 (11): 1454–1463.CrossRef Braza, F., J. Chesne, S. Castagnet, A. Magnan, and S. Brouard. 2014. Regulatory functions of B cells in allergic diseases. Allergy. 69 (11): 1454–1463.CrossRef
4.
go back to reference Klinker, M.W., and S.K. Lundy. 2012. Multiple mechanisms of immune suppression by B lymphocytes. Molecular Medicine 18: 123–137.CrossRef Klinker, M.W., and S.K. Lundy. 2012. Multiple mechanisms of immune suppression by B lymphocytes. Molecular Medicine 18: 123–137.CrossRef
5.
go back to reference Katz, S.I., D. Parker, and J.L. Turk. 1974. B-cell suppression of delayed hypersensitivity reactions. Nature. 251 (5475): 550–551.CrossRef Katz, S.I., D. Parker, and J.L. Turk. 1974. B-cell suppression of delayed hypersensitivity reactions. Nature. 251 (5475): 550–551.CrossRef
6.
go back to reference Wolf, S.D., B.N. Dittel, F. Hardardottir, and C.A. Janeway Jr. 1996. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184 (6): 2271–2278. Wolf, S.D., B.N. Dittel, F. Hardardottir, and C.A. Janeway Jr. 1996. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184 (6): 2271–2278.
7.
go back to reference Odake, S., C.M. Kam, L. Narasimhan, M. Poe, J.T. Blake, O. Krahenbuhl, J. Tschopp, and J.C. Powers. 1991. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 30 (8): 2217–2227.CrossRef Odake, S., C.M. Kam, L. Narasimhan, M. Poe, J.T. Blake, O. Krahenbuhl, J. Tschopp, and J.C. Powers. 1991. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 30 (8): 2217–2227.CrossRef
8.
go back to reference Buzza, M.S., L. Zamurs, J. Sun, C.H. Bird, A.I. Smith, J.A. Trapani, C.J. Froelich, E.C. Nice, and P.I. Bird. 2005. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280 (25): 23549–23558. Buzza, M.S., L. Zamurs, J. Sun, C.H. Bird, A.I. Smith, J.A. Trapani, C.J. Froelich, E.C. Nice, and P.I. Bird. 2005. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280 (25): 23549–23558.
9.
go back to reference Ganor, Y., V.I. Teichberg, and M. Levite. 2007. TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178 (2): 683–692. Ganor, Y., V.I. Teichberg, and M. Levite. 2007. TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178 (2): 683–692.
10.
go back to reference Jahrsdorfer, B., S.E. Blackwell, J.E. Wooldridge, J. Huang, M.W. Andreski, L.S. Jacobus, et al. 2006. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood. 108 (8): 2712–2719.CrossRef Jahrsdorfer, B., S.E. Blackwell, J.E. Wooldridge, J. Huang, M.W. Andreski, L.S. Jacobus, et al. 2006. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood. 108 (8): 2712–2719.CrossRef
11.
go back to reference Chesneau, M., L. Michel, E. Dugast, A. Chenouard, D. Baron, A. Pallier, J. Durand, F. Braza, P. Guerif, D.A. Laplaud, J.P. Soulillou, M. Giral, N. Degauque, E. Chiffoleau, and S. Brouard. 2015. Tolerant kidney transplant patients produce B cells with regulatory properties. J Am Soc Nephrol 26 (10): 2588–2598. Chesneau, M., L. Michel, E. Dugast, A. Chenouard, D. Baron, A. Pallier, J. Durand, F. Braza, P. Guerif, D.A. Laplaud, J.P. Soulillou, M. Giral, N. Degauque, E. Chiffoleau, and S. Brouard. 2015. Tolerant kidney transplant patients produce B cells with regulatory properties. J Am Soc Nephrol 26 (10): 2588–2598.
12.
go back to reference Zhu, J., Y. Zeng, S. Dolff, A. Bienholz, M. Lindemann, A. Brinkhoff, M. Schedlowski, S. Xu, M. Sun, H. Guberina, J. Kirchhof, A. Kribben, O. Witzke, and B. Wilde. 2017. Granzyme B producing B-cells in renal transplant patients. Clin Immunol 184: 48–53. Zhu, J., Y. Zeng, S. Dolff, A. Bienholz, M. Lindemann, A. Brinkhoff, M. Schedlowski, S. Xu, M. Sun, H. Guberina, J. Kirchhof, A. Kribben, O. Witzke, and B. Wilde. 2017. Granzyme B producing B-cells in renal transplant patients. Clin Immunol 184: 48–53.
13.
go back to reference Zhu, J.Q., J. Wang, X.L. Li, W.L. Xu, S.C. Lv, X. Zhao, R. Lang, and Q. He. 2021. A combination of the percentages of IFN-gamma(+)CD4(+)T cells and granzyme B(+)CD19(+)B cells is associated with acute hepatic rejection: a case control study. J Transl Med 19 (1): 187. Zhu, J.Q., J. Wang, X.L. Li, W.L. Xu, S.C. Lv, X. Zhao, R. Lang, and Q. He. 2021. A combination of the percentages of IFN-gamma(+)CD4(+)T cells and granzyme B(+)CD19(+)B cells is associated with acute hepatic rejection: a case control study. J Transl Med 19 (1): 187.
14.
go back to reference 1997. Banff schema for grading liver allograft rejection: an international consensus document. Hepatology. 25 (3): 658–663. 1997. Banff schema for grading liver allograft rejection: an international consensus document. Hepatology. 25 (3): 658–663.
15.
go back to reference Chesneau, M., H.L. Mai, R. Danger, S. Le Bot, T.V. Nguyen, J. Bernard, et al. 2020. Efficient expansion of human granzyme B-expressing B cells with potent regulatory properties. J Immun 205 (9): 2391–2401. Chesneau, M., H.L. Mai, R. Danger, S. Le Bot, T.V. Nguyen, J. Bernard, et al. 2020. Efficient expansion of human granzyme B-expressing B cells with potent regulatory properties. J Immun 205 (9): 2391–2401.
16.
go back to reference van de Veen, W., B. Stanic, O.F. Wirz, K. Jansen, A. Globinska, and M. Akdis. 2016. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138 (3): 654–665. van de Veen, W., B. Stanic, O.F. Wirz, K. Jansen, A. Globinska, and M. Akdis. 2016. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 138 (3): 654–665.
17.
go back to reference Lal, G., Y. Nakayama, A. Sethi, A.K. Singh, B.E. Burrell, N. Kulkarni, C.C. Brinkman, D. Iwami, T. Zhang, and J.S. Bromberg. 2015. Interleukin-10 from marginal zone precursor B-cell subset is required for costimulatory blockade-induced transplantation tolerance. Transplantation. 99 (9): 1817–1828.CrossRef Lal, G., Y. Nakayama, A. Sethi, A.K. Singh, B.E. Burrell, N. Kulkarni, C.C. Brinkman, D. Iwami, T. Zhang, and J.S. Bromberg. 2015. Interleukin-10 from marginal zone precursor B-cell subset is required for costimulatory blockade-induced transplantation tolerance. Transplantation. 99 (9): 1817–1828.CrossRef
18.
go back to reference Cugini, D., and M. Noris. 2010. Toward a B-cell signature of tolerance? Kidney Int 78 (5): 435–437. Cugini, D., and M. Noris. 2010. Toward a B-cell signature of tolerance? Kidney Int 78 (5): 435–437.
19.
go back to reference Chen, M., M. Mohtize, M.F. Mattei, J.P. Villemot, C. Kohler, G.C. Faure, et al. 2011. Reduced levels of both circulating CD4+ CD25+ CD127(low/neg) and CD4+ CD8(neg) invariant natural killer regulatory T cells in stable heart transplant recipients. Clin Exp Immunol 163 (1): 104–112. Chen, M., M. Mohtize, M.F. Mattei, J.P. Villemot, C. Kohler, G.C. Faure, et al. 2011. Reduced levels of both circulating CD4+ CD25+ CD127(low/neg) and CD4+ CD8(neg) invariant natural killer regulatory T cells in stable heart transplant recipients. Clin Exp Immunol 163 (1): 104–112.
20.
go back to reference Wieckowski, E., G.Q. Wang, B.R. Gastman, L.A. Goldstein, and H. Rabinowich. 2002. Granzyme B-mediated degradation of T-cell receptor zeta chain. Cancer Res 62 (17): 4884–4889. Wieckowski, E., G.Q. Wang, B.R. Gastman, L.A. Goldstein, and H. Rabinowich. 2002. Granzyme B-mediated degradation of T-cell receptor zeta chain. Cancer Res 62 (17): 4884–4889.
21.
go back to reference Kaltenmeier, C., A. Gawanbacht, T. Beyer, S. Lindner, T. Trzaska, J.A. van der Merwe, G. Härter, B. Grüner, D. Fabricius, R. Lotfi, K. Schwarz, C. Schütz, M. Hönig, A. Schulz, P. Kern, M. Bommer, H. Schrezenmeier, F. Kirchhoff, and B. Jahrsdörfer. 2015. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the in vivo development of granzyme B-expressing regulatory B cells in HIV patients. J Immunol 194 (8): 3768–3777. Kaltenmeier, C., A. Gawanbacht, T. Beyer, S. Lindner, T. Trzaska, J.A. van der Merwe, G. Härter, B. Grüner, D. Fabricius, R. Lotfi, K. Schwarz, C. Schütz, M. Hönig, A. Schulz, P. Kern, M. Bommer, H. Schrezenmeier, F. Kirchhoff, and B. Jahrsdörfer. 2015. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the in vivo development of granzyme B-expressing regulatory B cells in HIV patients. J Immunol 194 (8): 3768–3777.
Metadata
Title
Granzyme B–Producing B Cells Function as a Feedback Loop for T Helper Cells in Liver Transplant Recipients with Acute Rejection
Authors
Wen-Li Xu
Ruo-lin Wang
Zhe Liu
Qiao Wu
Xian-Liang Li
Qiang He
Ji-Qiao Zhu
Publication date
01-12-2021
Publisher
Springer US
Published in
Inflammation / Issue 6/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01498-9

Other articles of this Issue 6/2021

Inflammation 6/2021 Go to the issue