Skip to main content
Top
Published in: Inflammation 6/2021

01-12-2021 | Septicemia | Original Article

Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice

Authors: Liang Chen, Lingling Li, Yong Song, Tangfeng Lv

Published in: Inflammation | Issue 6/2021

Login to get access

Abstract

Acute ethanol intoxication increases the risk of sepsis and aggravates the symptoms of sepsis and lung injury. Therefore, this study aimed to explore whether sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor 1 (S1PR1) signaling pathway functions in lung injury caused by acute ethanol intoxication-enhanced sepsis, as well as its underlying mechanism. The acute ethanol intoxication model was simulated by intraperitoneally administering mice with 32% ethanol solution, and cecal ligation and puncture (CLP) was used to construct the sepsis model. The lung tissue damage was observed by hematoxylin-eosin (H&E) staining, and the wet-to-dry (W/D) ratio was used to evaluate the degree of pulmonary edema. Inflammatory cell counting and protein concentration in bronchoalveolar lavage fluid (BALF) were, respectively, detected by hemocytometer and bicinchoninic acid (BCA) method. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-18 in BALF were detected by their commercial enzyme-linked immunosorbent assay (ELISA) kits. The myeloperoxidase (MPO) activity and expression of apoptosis-related proteins and SphK1/S1P/S1PR1 pathway-related proteins were, respectively, analyzed by MPO ELISA kit and Western blot analysis. The cell apoptosis in lung tissues was observed by TUNEL assay. Acute ethanol intoxication (EtOH) decreased the survival rate of mice and exacerbated the lung injury caused by sepsis through increasing pulmonary vascular permeability, neutrophil infiltration, release of inflammatory factors, and cell apoptosis. In addition, EtOH could activate the SphK1/S1P/S1PR1 pathway in CLP mice. However, PF-543, as a specific inhibitor of SphK1, could partially reverse the deleterious effects on lung injury of CLP mice. PF-543 alleviated lung injury caused by sepsis in acute ethanol intoxication rats by suppressing the SphK1/S1P/S1PR1 signaling pathway.
Literature
1.
go back to reference Jeganathan, N., S. Yau, N. Ahuja, D. Otu, B. Stein, L. Fogg, and R. Balk. 2017. The characteristics and impact of source of infection on sepsis-related ICU outcomes. Journal of Critical Care 41: 170–176.CrossRef Jeganathan, N., S. Yau, N. Ahuja, D. Otu, B. Stein, L. Fogg, and R. Balk. 2017. The characteristics and impact of source of infection on sepsis-related ICU outcomes. Journal of Critical Care 41: 170–176.CrossRef
2.
go back to reference Pruett, S.B., Q. Zheng, R. Fan, K. Matthews, and C. Schwab. 2004. Ethanol suppresses cytokine responses induced through toll-like receptors as well as innate resistance to escherichia coli in a mouse model for binge drinking. Alcohol (Fayetteville, NY) 33: 147–155.CrossRef Pruett, S.B., Q. Zheng, R. Fan, K. Matthews, and C. Schwab. 2004. Ethanol suppresses cytokine responses induced through toll-like receptors as well as innate resistance to escherichia coli in a mouse model for binge drinking. Alcohol (Fayetteville, NY) 33: 147–155.CrossRef
3.
go back to reference Pruett, S.B., R. Fan, B. Cheng, M. Glover, W. Tan, and X. Deng. 2010. Innate immunity and inflammation in sepsis: mechanisms of suppressed host resistance in mice treated with ethanol in a binge-drinking model. Toxicological Sciences : An Official Journal of the Society of Toxicology 117: 314–324.CrossRef Pruett, S.B., R. Fan, B. Cheng, M. Glover, W. Tan, and X. Deng. 2010. Innate immunity and inflammation in sepsis: mechanisms of suppressed host resistance in mice treated with ethanol in a binge-drinking model. Toxicological Sciences : An Official Journal of the Society of Toxicology 117: 314–324.CrossRef
4.
go back to reference Yeligar, S.M., M.M. Chen, E.J. Kovacs, J.H. Sisson, E.L. Burnham, and L.A. Brown. 2016. Alcohol and lung injury and immunity. Alcohol (Fayetteville, NY) 55: 51–59.CrossRef Yeligar, S.M., M.M. Chen, E.J. Kovacs, J.H. Sisson, E.L. Burnham, and L.A. Brown. 2016. Alcohol and lung injury and immunity. Alcohol (Fayetteville, NY) 55: 51–59.CrossRef
5.
go back to reference Mehta, A.J., S.M. Yeligar, L. Elon, L.A. Brown, and D.M. Guidot. 2013. Alcoholism causes alveolar macrophage zinc deficiency and immune dysfunction. American Journal of Respiratory and Critical Care Medicine 188: 716–723.CrossRef Mehta, A.J., S.M. Yeligar, L. Elon, L.A. Brown, and D.M. Guidot. 2013. Alcoholism causes alveolar macrophage zinc deficiency and immune dysfunction. American Journal of Respiratory and Critical Care Medicine 188: 716–723.CrossRef
6.
go back to reference Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology 4: 397–407.CrossRef Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology 4: 397–407.CrossRef
7.
go back to reference Proia, R.L., and T. Hla. 2015. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. The Journal of Clinical Investigation 125: 1379–1387.CrossRef Proia, R.L., and T. Hla. 2015. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. The Journal of Clinical Investigation 125: 1379–1387.CrossRef
8.
go back to reference Rosen, H., R.C. Stevens, M. Hanson, E. Roberts, and M.B. Oldstone. 2013. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annual Review of Biochemistry 82: 637–662.CrossRef Rosen, H., R.C. Stevens, M. Hanson, E. Roberts, and M.B. Oldstone. 2013. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annual Review of Biochemistry 82: 637–662.CrossRef
9.
go back to reference Lufrano, M., A. Jacob, M. Zhou, and P. Wang. 2013. Sphingosine kinase-1 mediates endotoxemia-induced hyperinflammation in aged animals. Molecular Medicine Reports 8: 645–649.CrossRef Lufrano, M., A. Jacob, M. Zhou, and P. Wang. 2013. Sphingosine kinase-1 mediates endotoxemia-induced hyperinflammation in aged animals. Molecular Medicine Reports 8: 645–649.CrossRef
10.
go back to reference Eskan, M.A., B.G. Rose, M.R. Benakanakere, Q. Zeng, D. Fujioka, M.H. Martin, et al. 2008. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. European Journal of Immunology 38: 1138–1147.CrossRef Eskan, M.A., B.G. Rose, M.R. Benakanakere, Q. Zeng, D. Fujioka, M.H. Martin, et al. 2008. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. European Journal of Immunology 38: 1138–1147.CrossRef
11.
go back to reference Zhong, M., W. Wu, Y. Wang, H. Mao, J. Song, S. Chen, and D. Zhu. 2020. Inhibition of sphingosine kinase 1 attenuates sepsis-induced microvascular leakage via inhibiting macrophage NLRP3 inflammasome activation in mice. Anesthesiology 132: 1503–1515.CrossRef Zhong, M., W. Wu, Y. Wang, H. Mao, J. Song, S. Chen, and D. Zhu. 2020. Inhibition of sphingosine kinase 1 attenuates sepsis-induced microvascular leakage via inhibiting macrophage NLRP3 inflammasome activation in mice. Anesthesiology 132: 1503–1515.CrossRef
12.
go back to reference Ugwu, F.N., and J. Ho. 2019. Preclinical evidence of sphingosine kinase 1 inhibition in alleviation of intestinal epithelial injury in polymicrobial sepsis. Inflammation Research : Official Journal of the European Histamine Research Society [et al] 68: 723–726.CrossRef Ugwu, F.N., and J. Ho. 2019. Preclinical evidence of sphingosine kinase 1 inhibition in alleviation of intestinal epithelial injury in polymicrobial sepsis. Inflammation Research : Official Journal of the European Histamine Research Society [et al] 68: 723–726.CrossRef
13.
go back to reference Tian, T., Y. Zhao, Q. Huang, and J. Li. 2016. n-3 polyunsaturated fatty acids improve inflammation via inhibiting sphingosine kinase 1 in a rat model of parenteral nutrition and CLP-induced sepsis. Lipids 51: 271.CrossRef Tian, T., Y. Zhao, Q. Huang, and J. Li. 2016. n-3 polyunsaturated fatty acids improve inflammation via inhibiting sphingosine kinase 1 in a rat model of parenteral nutrition and CLP-induced sepsis. Lipids 51: 271.CrossRef
14.
go back to reference Zhang, T., T. Yan, J. Du, S. Wang, and H. Yang. 2015. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chemico-Biological Interactions 233: 46–55.CrossRef Zhang, T., T. Yan, J. Du, S. Wang, and H. Yang. 2015. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chemico-Biological Interactions 233: 46–55.CrossRef
15.
go back to reference Wang, Y., T.T. Gao, D.F. Xu, X.Y. Zhu, W.W. Dong, Z. Lv, Y.J. Liu, and L. Jiang. 2019. Upregulation of sphingosine kinase 1 contributes to ventilator-associated lung injury in a two-hit model. International Journal of Molecular Medicine 44: 2077–2090.PubMedPubMedCentral Wang, Y., T.T. Gao, D.F. Xu, X.Y. Zhu, W.W. Dong, Z. Lv, Y.J. Liu, and L. Jiang. 2019. Upregulation of sphingosine kinase 1 contributes to ventilator-associated lung injury in a two-hit model. International Journal of Molecular Medicine 44: 2077–2090.PubMedPubMedCentral
16.
go back to reference Mehaffey, J.H., E.J. Charles, A.K. Narahari, S. Schubert, V.E. Laubach, N.R. Teman, K.R. Lynch, I.L. Kron, and A.K. Sharma. 2018. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. The Journal of Thoracic and Cardiovascular Surgery 156: 910–917.CrossRef Mehaffey, J.H., E.J. Charles, A.K. Narahari, S. Schubert, V.E. Laubach, N.R. Teman, K.R. Lynch, I.L. Kron, and A.K. Sharma. 2018. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. The Journal of Thoracic and Cardiovascular Surgery 156: 910–917.CrossRef
17.
go back to reference Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, et al. 2021. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcoholic steatohepatitis in mice. Hepatology 73: 952–967. Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, et al. 2021. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcoholic steatohepatitis in mice. Hepatology 73: 952–967.
18.
go back to reference Sharma, D., A. Malik, N. Packiriswamy, M.D. Steury, and N. Parameswaran. 2018. Poly(I:C) priming exacerbates cecal ligation and puncture-induced polymicrobial sepsis in mice. Inflammation 41: 328–336.CrossRef Sharma, D., A. Malik, N. Packiriswamy, M.D. Steury, and N. Parameswaran. 2018. Poly(I:C) priming exacerbates cecal ligation and puncture-induced polymicrobial sepsis in mice. Inflammation 41: 328–336.CrossRef
19.
go back to reference Wen, H., H. Zhang, W. Wang, and Y. Li. 2020. Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/AKT/mTOR-mediated autophagy in rats. Pulmonary Pharmacology & Therapeutics 64: 101947.CrossRef Wen, H., H. Zhang, W. Wang, and Y. Li. 2020. Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/AKT/mTOR-mediated autophagy in rats. Pulmonary Pharmacology & Therapeutics 64: 101947.CrossRef
20.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402–408.CrossRef Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402–408.CrossRef
21.
go back to reference Burnham, E.L., R. Halkar, M. Burks, and M. Moss. 2009. The effects of alcohol abuse on pulmonary alveolar-capillary barrier function in humans. Alcohol and Alcoholism 44: 8–12.CrossRef Burnham, E.L., R. Halkar, M. Burks, and M. Moss. 2009. The effects of alcohol abuse on pulmonary alveolar-capillary barrier function in humans. Alcohol and Alcoholism 44: 8–12.CrossRef
22.
go back to reference von Dossow, V., C. Schilling, S. Beller, O.V. Hein, C. von Heymann, W.J. Kox, et al. 2004. Altered immune parameters in chronic alcoholic patients at the onset of infection and of septic shock. Critical Care (London, England) 8: R312–R321.CrossRef von Dossow, V., C. Schilling, S. Beller, O.V. Hein, C. von Heymann, W.J. Kox, et al. 2004. Altered immune parameters in chronic alcoholic patients at the onset of infection and of septic shock. Critical Care (London, England) 8: R312–R321.CrossRef
23.
go back to reference Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews. Immunology 8: 776–787.CrossRef Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews. Immunology 8: 776–787.CrossRef
24.
go back to reference Huttunen, R., J. Laine, J. Lumio, R. Vuento, and J. Syrjänen. 2007. Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia. BMC Infectious Diseases 7: 13.CrossRef Huttunen, R., J. Laine, J. Lumio, R. Vuento, and J. Syrjänen. 2007. Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia. BMC Infectious Diseases 7: 13.CrossRef
25.
go back to reference McGill, V., A. Kowal-Vern, S.G. Fisher, S. Kahn, and R.L. Gamelli. 1995. The impact of substance use on mortality and morbidity from thermal injury. The Journal of Trauma 38: 931–934.CrossRef McGill, V., A. Kowal-Vern, S.G. Fisher, S. Kahn, and R.L. Gamelli. 1995. The impact of substance use on mortality and morbidity from thermal injury. The Journal of Trauma 38: 931–934.CrossRef
26.
go back to reference Woodman, G.E., T.C. Fabian, J.D. Beard, and K.G. Proctor. 1996. Actions of acute ethanol intoxication on cardiopulmonary function after an endotoxin challenge. Surgery 120: 80–92.CrossRef Woodman, G.E., T.C. Fabian, J.D. Beard, and K.G. Proctor. 1996. Actions of acute ethanol intoxication on cardiopulmonary function after an endotoxin challenge. Surgery 120: 80–92.CrossRef
27.
go back to reference Spiegel, S., and S. Milstien. 2000. Functions of a new family of sphingosine-1-phosphate receptors. Biochimica et Biophysica Acta 1484: 107–116.CrossRef Spiegel, S., and S. Milstien. 2000. Functions of a new family of sphingosine-1-phosphate receptors. Biochimica et Biophysica Acta 1484: 107–116.CrossRef
28.
go back to reference Hla, T., M.J. Lee, N. Ancellin, J.H. Paik, and M.J. Kluk. 2001. Lysophospholipids--receptor revelations. Science 294: 1875–1878.CrossRef Hla, T., M.J. Lee, N. Ancellin, J.H. Paik, and M.J. Kluk. 2001. Lysophospholipids--receptor revelations. Science 294: 1875–1878.CrossRef
29.
go back to reference Pyne, S., and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacology & Therapeutics 88: 115–131.CrossRef Pyne, S., and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacology & Therapeutics 88: 115–131.CrossRef
30.
go back to reference Galli, S.J. 2017. Mast cells and KIT as potential therapeutic targets in severe asthma. The New England Journal of Medicine 376: 1983–1984.CrossRef Galli, S.J. 2017. Mast cells and KIT as potential therapeutic targets in severe asthma. The New England Journal of Medicine 376: 1983–1984.CrossRef
31.
go back to reference Wang, L., X.P. Xing, A. Holmes, C. Wadham, J.R. Gamble, M.A. Vadas, and P. Xia. 2005. Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circulation Research 97: 891–899.CrossRef Wang, L., X.P. Xing, A. Holmes, C. Wadham, J.R. Gamble, M.A. Vadas, and P. Xia. 2005. Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circulation Research 97: 891–899.CrossRef
32.
go back to reference You, B., A. Ren, G. Yan, and J. Sun. 2007. Activation of sphingosine kinase-1 mediates inhibition of vascular smooth muscle cell apoptosis by hyperglycemia. Diabetes 56: 1445–1453.CrossRef You, B., A. Ren, G. Yan, and J. Sun. 2007. Activation of sphingosine kinase-1 mediates inhibition of vascular smooth muscle cell apoptosis by hyperglycemia. Diabetes 56: 1445–1453.CrossRef
33.
go back to reference Xin, C., S. Ren, B. Kleuser, S. Shabahang, W. Eberhardt, H. Radeke, M. Schäfer-Korting, J. Pfeilschifter, and A. Huwiler. 2004. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. The Journal of Biological Chemistry 279: 35255–35262.CrossRef Xin, C., S. Ren, B. Kleuser, S. Shabahang, W. Eberhardt, H. Radeke, M. Schäfer-Korting, J. Pfeilschifter, and A. Huwiler. 2004. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. The Journal of Biological Chemistry 279: 35255–35262.CrossRef
34.
go back to reference Su, K., P. Zeng, W. Liang, Z. Luo, Y. Wang, X. Lv, et al. 2017. FTY720 Attenuates angiotensin II-induced podocyte damage via inhibiting inflammatory cytokines. Mediators of Inflammation 2017: 3701385.CrossRef Su, K., P. Zeng, W. Liang, Z. Luo, Y. Wang, X. Lv, et al. 2017. FTY720 Attenuates angiotensin II-induced podocyte damage via inhibiting inflammatory cytokines. Mediators of Inflammation 2017: 3701385.CrossRef
35.
go back to reference Liu, H.Y., W.D. Liu, Z.A. Chen, G. Gao, and G.H. Yan. 2020. FTY⁃720 regulated airway inflammation in asthmatic mice via S1P1 receptor. Chinese Journal of Immunity 36: 1419–1421+1432. Liu, H.Y., W.D. Liu, Z.A. Chen, G. Gao, and G.H. Yan. 2020. FTY⁃720 regulated airway inflammation in asthmatic mice via S1P1 receptor. Chinese Journal of Immunity 36: 1419–1421+1432.
36.
go back to reference Zhang, F., Y. Xia, W. Yan, H. Zhang, F. Zhou, S. Zhao, W. Wang, D. Zhu, C. Xin, Y. Lee, L. Zhang, Y. He, E. Gao, and L. Tao. 2016. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology 310: H250–H261.CrossRef Zhang, F., Y. Xia, W. Yan, H. Zhang, F. Zhou, S. Zhao, W. Wang, D. Zhu, C. Xin, Y. Lee, L. Zhang, Y. He, E. Gao, and L. Tao. 2016. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology 310: H250–H261.CrossRef
37.
go back to reference Vyas, V., C.R. Ashby Jr., N.S. Olgun, S. Sundaram, O. Salami, S. Munnangi, R. Pekson, P. Mahajan, and S.E. Reznik. 2015. Inhibition of sphingosine kinase prevents lipopolysaccharide-induced preterm birth and suppresses proinflammatory responses in a murine model. The American Journal of Pathology 185: 862–869.CrossRef Vyas, V., C.R. Ashby Jr., N.S. Olgun, S. Sundaram, O. Salami, S. Munnangi, R. Pekson, P. Mahajan, and S.E. Reznik. 2015. Inhibition of sphingosine kinase prevents lipopolysaccharide-induced preterm birth and suppresses proinflammatory responses in a murine model. The American Journal of Pathology 185: 862–869.CrossRef
38.
go back to reference Lee, H., J. Deng, M. Kujawski, C. Yang, Y. Liu, A. Herrmann, M. Kortylewski, D. Horne, G. Somlo, S. Forman, R. Jove, and H. Yu. 2010. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine 16: 1421–1428.CrossRef Lee, H., J. Deng, M. Kujawski, C. Yang, Y. Liu, A. Herrmann, M. Kortylewski, D. Horne, G. Somlo, S. Forman, R. Jove, and H. Yu. 2010. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine 16: 1421–1428.CrossRef
39.
go back to reference Liang, J., M. Nagahashi, E.Y. Kim, K.B. Harikumar, A. Yamada, W.C. Huang, N.C. Hait, J.C. Allegood, M.M. Price, D. Avni, K. Takabe, T. Kordula, S. Milstien, and S. Spiegel. 2013. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23: 107–120.CrossRef Liang, J., M. Nagahashi, E.Y. Kim, K.B. Harikumar, A. Yamada, W.C. Huang, N.C. Hait, J.C. Allegood, M.M. Price, D. Avni, K. Takabe, T. Kordula, S. Milstien, and S. Spiegel. 2013. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23: 107–120.CrossRef
Metadata
Title
Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice
Authors
Liang Chen
Lingling Li
Yong Song
Tangfeng Lv
Publication date
01-12-2021
Publisher
Springer US
Published in
Inflammation / Issue 6/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01490-3

Other articles of this Issue 6/2021

Inflammation 6/2021 Go to the issue