Skip to main content
Top
Published in: Inflammation 5/2020

01-10-2020 | Obesity | Original Article

Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon

Authors: Xue Li, Xin Li

Published in: Inflammation | Issue 5/2020

Login to get access

Abstract

Although obesity is associated with inflammatory bowel disease (IBD), the underlying molecular mechanism still remains unclear. In this study, we evaluated the effects of high-fat diet (HFD)-induced obesity on the development of experimental colitis in mice. The C57BL/6 mice were fed with a HFD for 12 weeks to develop obesity. The concentrations of free fatty acids (FFA), triglycerides, and cholesterol in plasma were significantly increased in HFD-fed mice compared to low-fat diet (LFD)-fed mice. We found that HFD-induced obesity could exacerbate 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced experimental colitis in mice resembling Crohn’s disease (CD). HFD-fed mice showed shorter colon length, higher clinical scores and histological scores, more production of mucosal tumor necrosis factor-α (TNF-α), and greater destruction of colonic epithelial barrier than LFD-fed mice after TNBS induction. HFD feeding also promoted reactive oxygen species (ROS) production in colonic epithelial cells, thus activating the pro-apoptotic pathway to damage colonic epithelial barrier induced by TNBS. After HCT116 cells were treated with palmitate acid (PA) and/or TNF-α for 24 h, the combination of PA and TNF-α increased ROS production, promoted mitochondrial dysfunction, and activated the pro-apoptotic pathway, but these effects were markedly attenuated by a ROS inhibitor. Taken together, these observations suggest that HFD-induced obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction, which triggers the activation of pro-apoptotic pathway in the colon.
Literature
1.
go back to reference Gibson, P.R. 2004. Increased gut permeability in Crohn disease: Is TNF the link? Gut 53: 1724–1725.CrossRef Gibson, P.R. 2004. Increased gut permeability in Crohn disease: Is TNF the link? Gut 53: 1724–1725.CrossRef
2.
go back to reference Wu, X.X., X.L. Huang, R.R. Chen, T. Li, H.J. Ye, W. Xie, Z.M. Huang, and G.Z. Cao. 2019. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 42: 2215–2225.CrossRef Wu, X.X., X.L. Huang, R.R. Chen, T. Li, H.J. Ye, W. Xie, Z.M. Huang, and G.Z. Cao. 2019. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 42: 2215–2225.CrossRef
3.
go back to reference Fasano, A., and T. Sheadonohue. 2005. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature Clinical Practice. Gastroenterology & Hepatology 2: 416–422.CrossRef Fasano, A., and T. Sheadonohue. 2005. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature Clinical Practice. Gastroenterology & Hepatology 2: 416–422.CrossRef
4.
go back to reference He, L., T. Liu, Y. Shi, F. Tian, H. Hu, D.K. Deb, Y. Chen, M. Bissonnette, and Y.C. Li. 2018. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology 159: 967–979.CrossRef He, L., T. Liu, Y. Shi, F. Tian, H. Hu, D.K. Deb, Y. Chen, M. Bissonnette, and Y.C. Li. 2018. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology 159: 967–979.CrossRef
5.
go back to reference Capaldo, C.T., D.N. Powell, and D. Kalman. 2017. Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine 95: 927–934.CrossRef Capaldo, C.T., D.N. Powell, and D. Kalman. 2017. Layered defense: How mucus and tight junctions seal the intestinal barrier. Journal of Molecular Medicine 95: 927–934.CrossRef
6.
go back to reference Du, J., Y. Chen, Y. Shi, T. Liu, Y. Cao, Y. Tang, X. Ge, H. Nie, C. Zheng, and Y.C. Li. 2015. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflammatory Bowel Diseases 21: 2495–2506.CrossRef Du, J., Y. Chen, Y. Shi, T. Liu, Y. Cao, Y. Tang, X. Ge, H. Nie, C. Zheng, and Y.C. Li. 2015. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflammatory Bowel Diseases 21: 2495–2506.CrossRef
7.
go back to reference Sabatino, A.D., R. Ciccocioppo, O. Luinetti, L. Ricevuti, R. Morera, M. Cifone, E. Solcia, and G. Corazza. 2003. Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Diseases of the Colon & Rectum 46: 1498–1507.CrossRef Sabatino, A.D., R. Ciccocioppo, O. Luinetti, L. Ricevuti, R. Morera, M. Cifone, E. Solcia, and G. Corazza. 2003. Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Diseases of the Colon & Rectum 46: 1498–1507.CrossRef
8.
go back to reference Nenci, A., C. Becker, A. Wullaert, R. Gareus, G. van Loo, S. Danese, M. Huth, A. Nikolaev, C. Neufert, and B. Madison. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446: 557–561.CrossRef Nenci, A., C. Becker, A. Wullaert, R. Gareus, G. van Loo, S. Danese, M. Huth, A. Nikolaev, C. Neufert, and B. Madison. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446: 557–561.CrossRef
9.
go back to reference Shi, Y., T. Liu, L. He, U. Dougherty, L. Chen, S. Adhikari, L. Alpert, G. Zhou, W. Liu, J. Wang, D.K. Deb, J. Hart, S.Q. Liu, J. Kwon, J. Pekow, D.T. Rubin, Q. Zhao, M. Bissonnette, and Y.C. Li. 2016. Activation of the renin-angiotensin system promotes colitis development. Scientific Reports 6: 27552.CrossRef Shi, Y., T. Liu, L. He, U. Dougherty, L. Chen, S. Adhikari, L. Alpert, G. Zhou, W. Liu, J. Wang, D.K. Deb, J. Hart, S.Q. Liu, J. Kwon, J. Pekow, D.T. Rubin, Q. Zhao, M. Bissonnette, and Y.C. Li. 2016. Activation of the renin-angiotensin system promotes colitis development. Scientific Reports 6: 27552.CrossRef
10.
go back to reference Colombo, B.B., V. Fattori, C.F.S. Guazelli, T.H. Zaninelli, T.T. Carvalh, C.R. Ferraz, A.J.C. Bussmann, K.W. Ruizmiyazawa, M.M. Baracat, R. Casaqrande, and W.A. Verri Jr. 2018. Vinpocetine ameliorates acetic acid-induced colitis by inhibiting NF-κB activation in mice. Inflammation 41: 1276–1289.CrossRef Colombo, B.B., V. Fattori, C.F.S. Guazelli, T.H. Zaninelli, T.T. Carvalh, C.R. Ferraz, A.J.C. Bussmann, K.W. Ruizmiyazawa, M.M. Baracat, R. Casaqrande, and W.A. Verri Jr. 2018. Vinpocetine ameliorates acetic acid-induced colitis by inhibiting NF-κB activation in mice. Inflammation 41: 1276–1289.CrossRef
11.
go back to reference Komaki, Y., F. Komaki, A. Sakuraba, and R. Cohen. 2016. Approach to optimize anti-TNF-α therapy in patients with IBD. Current Treatment Options in Gastroenterology 14: 83–90.CrossRef Komaki, Y., F. Komaki, A. Sakuraba, and R. Cohen. 2016. Approach to optimize anti-TNF-α therapy in patients with IBD. Current Treatment Options in Gastroenterology 14: 83–90.CrossRef
12.
go back to reference Al-Sadi, R., S. Guo, D. Ye, M. Rawat, and T.Y. Ma. 2016. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α Axis activation of the canonical NF-κB pathway. American Journal of Pathology 186: 1151–1165.CrossRef Al-Sadi, R., S. Guo, D. Ye, M. Rawat, and T.Y. Ma. 2016. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α Axis activation of the canonical NF-κB pathway. American Journal of Pathology 186: 1151–1165.CrossRef
13.
go back to reference Suski, J.M., M. Lebiedzinska, M. Bonora, P. Pinton, and M.R. Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation. Methods in Molecular Biology 810: 83–205. Suski, J.M., M. Lebiedzinska, M. Bonora, P. Pinton, and M.R. Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation. Methods in Molecular Biology 810: 83–205.
14.
go back to reference Ye, L., S. Mao, S. Fang, J. Zhang, Y. Tan, and W. Gu. 2019. Increased serum Romo1 was correlated with lung function, inflammation, and oxidative stress in chronic obstructive pulmonary disease. Inflammation 42: 1555–1560.CrossRef Ye, L., S. Mao, S. Fang, J. Zhang, Y. Tan, and W. Gu. 2019. Increased serum Romo1 was correlated with lung function, inflammation, and oxidative stress in chronic obstructive pulmonary disease. Inflammation 42: 1555–1560.CrossRef
15.
go back to reference Liao, H.Y., C.M. Kao, C. Yao, P.W. Chiu, and S.C. Chen. 2017. 2,4,6-trinitrotoluene induces apoptosis via ROS-regulated mitochondrial dysfunction and endoplasmic reticulum stress in HepG2 and Hep3B cells. Scientific Reports 7: 8148.CrossRef Liao, H.Y., C.M. Kao, C. Yao, P.W. Chiu, and S.C. Chen. 2017. 2,4,6-trinitrotoluene induces apoptosis via ROS-regulated mitochondrial dysfunction and endoplasmic reticulum stress in HepG2 and Hep3B cells. Scientific Reports 7: 8148.CrossRef
16.
go back to reference Harper, J.W., and Z.T. L. 2016. Interaction of obesity and inflammatory bowel disease. World Journal of Gastroenterology 22: 7868–7881.CrossRef Harper, J.W., and Z.T. L. 2016. Interaction of obesity and inflammatory bowel disease. World Journal of Gastroenterology 22: 7868–7881.CrossRef
17.
go back to reference Okla, M., W. Zaher, M. Alfayez, and S. Chung. 2018. Inhibitory effects of toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation 41: 626–642.CrossRef Okla, M., W. Zaher, M. Alfayez, and S. Chung. 2018. Inhibitory effects of toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation 41: 626–642.CrossRef
18.
go back to reference Bournat, J.C., and C.W. Brown. 2015. Mitochondrial dysfunction in obesity. Current Opinion in Endocrinology, Diabetes, and Obesity 17: 446–452.CrossRef Bournat, J.C., and C.W. Brown. 2015. Mitochondrial dysfunction in obesity. Current Opinion in Endocrinology, Diabetes, and Obesity 17: 446–452.CrossRef
19.
go back to reference Cheng, L., H. Jin, Y. Qiang, S. Wu, C. Yan, M. Han, T. Xiao, N. Yan, H. An, and X. Zhou. 2016. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology 40: 1–10.CrossRef Cheng, L., H. Jin, Y. Qiang, S. Wu, C. Yan, M. Han, T. Xiao, N. Yan, H. An, and X. Zhou. 2016. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology 40: 1–10.CrossRef
20.
go back to reference Wunderlich, C.M., P.J. Ackermann, A.L. Ostermann, P. Adams-Quack, M.C. Vogt, M.-L. Tran, A. Nikolajev, A. Waisman, C. Garbers, and S. Theurich. 2018. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nature Communications 9: 1646.CrossRef Wunderlich, C.M., P.J. Ackermann, A.L. Ostermann, P. Adams-Quack, M.C. Vogt, M.-L. Tran, A. Nikolajev, A. Waisman, C. Garbers, and S. Theurich. 2018. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nature Communications 9: 1646.CrossRef
21.
go back to reference Li, X., X. Wei, Y. Sun, J. Du, X. Li, Z. Xun, and Y.C. Li. 2019. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G453–G462.CrossRef Li, X., X. Wei, Y. Sun, J. Du, X. Li, Z. Xun, and Y.C. Li. 2019. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G453–G462.CrossRef
22.
go back to reference Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRef Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRef
23.
go back to reference Alnahdi, A., A. John, and H. Raza. 2019. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 11: 1979.CrossRef Alnahdi, A., A. John, and H. Raza. 2019. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 11: 1979.CrossRef
24.
go back to reference Gulhane, M., L. Murray, R. Lourie, H. Tong, Y.H. Sheng, R. Wang, A. Kang, V. Schreiber, K.Y. Wong, and G. Magor. 2016. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports 6: 28990.CrossRef Gulhane, M., L. Murray, R. Lourie, H. Tong, Y.H. Sheng, R. Wang, A. Kang, V. Schreiber, K.Y. Wong, and G. Magor. 2016. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports 6: 28990.CrossRef
25.
go back to reference Paik, J., Y. Fierce, P.M. Treuting, T. Brabb, and L. Maggio-Price. 2013. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. Journal of Nutrition 143: 1240–1247.CrossRef Paik, J., Y. Fierce, P.M. Treuting, T. Brabb, and L. Maggio-Price. 2013. High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. Journal of Nutrition 143: 1240–1247.CrossRef
26.
go back to reference June-Chul, L., L. Hae-Youn, K.T. Kang, K. Min-Soo, P.Y. Mi, K. Jinyoung, P. Kihyoun, K. Mi-Na, K. Seok-Hyung, and B. Jin-Woo. 2017. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 12: e0187515.CrossRef June-Chul, L., L. Hae-Youn, K.T. Kang, K. Min-Soo, P.Y. Mi, K. Jinyoung, P. Kihyoun, K. Mi-Na, K. Seok-Hyung, and B. Jin-Woo. 2017. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 12: e0187515.CrossRef
27.
go back to reference Crespo, I., B. San-Miguel, C. Prause, N. Marroni, M.J. Cuevas, J. González-Gallego, and M.J. Tuñón. 2012. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 7: e50407.CrossRef Crespo, I., B. San-Miguel, C. Prause, N. Marroni, M.J. Cuevas, J. González-Gallego, and M.J. Tuñón. 2012. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 7: e50407.CrossRef
28.
go back to reference Qin, L., Z.Q. Yao, Q. Chang, Y.L. Zhao, and J. Li. 2016. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 8: 7391–7404.CrossRef Qin, L., Z.Q. Yao, Q. Chang, Y.L. Zhao, and J. Li. 2016. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 8: 7391–7404.CrossRef
29.
go back to reference Coppack, S.W. 2001. Pro-inflammatory cytokines and adipose tissue. The Proceedings of the Nutrition Society 60: 349–356.CrossRef Coppack, S.W. 2001. Pro-inflammatory cytokines and adipose tissue. The Proceedings of the Nutrition Society 60: 349–356.CrossRef
30.
go back to reference Ding, X., D. Li, M. Li, H. Wang, and Q. Yu. 2018. SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Laboratory Investigation 98: 462–476.CrossRef Ding, X., D. Li, M. Li, H. Wang, and Q. Yu. 2018. SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Laboratory Investigation 98: 462–476.CrossRef
31.
go back to reference Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141–153.CrossRef Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141–153.CrossRef
32.
go back to reference Mcmurray, F., D.A. Patten, and M.-E. Harper. 2016. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity 24: 2301–2310.CrossRef Mcmurray, F., D.A. Patten, and M.-E. Harper. 2016. Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity 24: 2301–2310.CrossRef
33.
go back to reference Yao, J., Z. Li, Y. Fu, R. Wu, Y. Wang, C. Liu, L. Yang, and H. Zhang. 2019. Involvement of obesity-associated upregulation of chemerin/chemokine-like receptor 1 in oxidative stress and apoptosis in ovaries and granulosa cells. Biochemical and Biophysical Research Communications 12: 449–455.CrossRef Yao, J., Z. Li, Y. Fu, R. Wu, Y. Wang, C. Liu, L. Yang, and H. Zhang. 2019. Involvement of obesity-associated upregulation of chemerin/chemokine-like receptor 1 in oxidative stress and apoptosis in ovaries and granulosa cells. Biochemical and Biophysical Research Communications 12: 449–455.CrossRef
34.
go back to reference Ji, J., Y. Qin, J. Ren, C. Lu, R. Wang, X. Dai, R. Zhou, Z. Huang, M. Xu, and M. Chen. 2015. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Scientific Reports 5: 16262.CrossRef Ji, J., Y. Qin, J. Ren, C. Lu, R. Wang, X. Dai, R. Zhou, Z. Huang, M. Xu, and M. Chen. 2015. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Scientific Reports 5: 16262.CrossRef
35.
go back to reference Zhan, M., C. Brooks, F. Liu, L. Sun, and Z. Dong. 2013. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney International 83: 568–581.CrossRef Zhan, M., C. Brooks, F. Liu, L. Sun, and Z. Dong. 2013. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney International 83: 568–581.CrossRef
Metadata
Title
Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon
Authors
Xue Li
Xin Li
Publication date
01-10-2020
Publisher
Springer US
Published in
Inflammation / Issue 5/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01261-6

Other articles of this Issue 5/2020

Inflammation 5/2020 Go to the issue