Skip to main content
Top
Published in: Inflammation 4/2020

01-08-2020 | Original Article

Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming

Authors: Wei Pan, Shanshan Hao, Mingxuan Zheng, Danhong Lin, Pengfei Jiang, Jinxiu Zhao, Hongli Shi, Xiaoying Yang, Xiangyang Li, Yinghua Yu

Published in: Inflammation | Issue 4/2020

Login to get access

Abstract

Trained immunity has been recently identified in innate immune cells, which undergo long-term epigenetic and metabolic reprogramming after exposure to pathogens for protection from secondary infections. (1, 3)/(1, 6)-β-glucan derived from fungi can induce potent trained immunity; however, the effect of (1, 3)/(1, 4)-β-glucan (rich in dietary fiber oat) on trained immunity has not been reported. In the present study, two cell culture systems for trained immunity induction were validated in monocytes/macrophages from mouse bone myeloid and human THP-1 cells exposed to positive inducers of trained immunity, including β-glucan from Trametes versicolor or human-oxidized low-density lipoprotein. Primed with oat β-glucan, the mRNA expression and production of TNF-α and IL-6 significantly increased in response to re-stimulation of TLR-4/2 ligands. Moreover, the expression of several key enzymes in glycolytic pathway and tricarboxylic acid cycle was significantly upregulated. In addition, inhibiting these enzymes decreased the production of TNF-α and IL-6 boosted by oat β-glucan. These results show that oat β-glucan induces trained immunity through metabolic reprogramming. This provides important evidence that dietary fiber can maintain the long-term responsiveness of the innate immune system, which may benefit for prevention of infectious diseases or cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: a memory for innate host defense. Cell Host & Microbe 9: 355–361.CrossRef Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: a memory for innate host defense. Cell Host & Microbe 9: 355–361.CrossRef
2.
go back to reference Netea, M.G., and J.W. van der Meer. 2017. Trained immunity: An ancient way of remembering. Cell Host & Microbe 21: 297–300.CrossRef Netea, M.G., and J.W. van der Meer. 2017. Trained immunity: An ancient way of remembering. Cell Host & Microbe 21: 297–300.CrossRef
3.
go back to reference Mourits, V.P., J.C. Wijkmans, L.A. Joosten, and M.G. Netea. 2018. Trained immunity as a novel therapeutic strategy. Current Opinion in Pharmacology 41: 52–58.CrossRef Mourits, V.P., J.C. Wijkmans, L.A. Joosten, and M.G. Netea. 2018. Trained immunity as a novel therapeutic strategy. Current Opinion in Pharmacology 41: 52–58.CrossRef
4.
go back to reference Moret, Y., and M.T. Siva-Jothy. 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 2475–2480. Moret, Y., and M.T. Siva-Jothy. 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 2475–2480.
5.
go back to reference Pham, H., R. Ferrari, S.J. Cokus, S.K. Kurdistani, and M. Pellegrini. 2007. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae. Molecular Systems Biology 3: 153.CrossRef Pham, H., R. Ferrari, S.J. Cokus, S.K. Kurdistani, and M. Pellegrini. 2007. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae. Molecular Systems Biology 3: 153.CrossRef
6.
go back to reference Kristensen, I., P. Aaby, and H. Jensen. 2000. Routine vaccinations and child survival: follow up study in Guinea-Bissau. Bmj 321: 1435–1438.CrossRef Kristensen, I., P. Aaby, and H. Jensen. 2000. Routine vaccinations and child survival: follow up study in Guinea-Bissau. Bmj 321: 1435–1438.CrossRef
7.
go back to reference Aaby, P., A. Roth, H. Ravn, B.M. Napirna, A. Rodrigues, I.M. Lisse, L. Stensballe, B.R. Diness, K.R. Lausch, N. Lund, S. Biering-Sørensen, H. Whittle, and C.S. Benn. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period. Journal of Infectious Diseases 204: 245–252.CrossRef Aaby, P., A. Roth, H. Ravn, B.M. Napirna, A. Rodrigues, I.M. Lisse, L. Stensballe, B.R. Diness, K.R. Lausch, N. Lund, S. Biering-Sørensen, H. Whittle, and C.S. Benn. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period. Journal of Infectious Diseases 204: 245–252.CrossRef
8.
go back to reference Arts, R.J.W., A. Carvalho, C. La Rocca, C. Palma, F. Rodrigues, R. Silvestre, J. Kleinnijenhuis, E. Lachmandas, L.G. Gonçalves, A. Belinha, C. Cunha, M. Oosting, L.A.B. Joosten, G. Matarese, R. van Crevel, and M.G. Netea. 2016. Immunometabolic pathways in BCG-induced trained immunity. Cell Reports 17: 2562–2571.CrossRef Arts, R.J.W., A. Carvalho, C. La Rocca, C. Palma, F. Rodrigues, R. Silvestre, J. Kleinnijenhuis, E. Lachmandas, L.G. Gonçalves, A. Belinha, C. Cunha, M. Oosting, L.A.B. Joosten, G. Matarese, R. van Crevel, and M.G. Netea. 2016. Immunometabolic pathways in BCG-induced trained immunity. Cell Reports 17: 2562–2571.CrossRef
9.
go back to reference Kleinnijenhuis, J., J. Quintin, F. Preijers, L.A. Joosten, D.C. Ifrim, S. Saeed, C. Jacobs, J. van Loenhout, D. de Jong, H.G. Stunnenberg, R.J. Xavier, J.W. van der Meer, R. van Crevel, and M.G. Netea. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences 109: 17537–17542.CrossRef Kleinnijenhuis, J., J. Quintin, F. Preijers, L.A. Joosten, D.C. Ifrim, S. Saeed, C. Jacobs, J. van Loenhout, D. de Jong, H.G. Stunnenberg, R.J. Xavier, J.W. van der Meer, R. van Crevel, and M.G. Netea. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences 109: 17537–17542.CrossRef
10.
go back to reference Bekkering, S., J. Quintin, L.A. Joosten, J.W. van der Meer, M.G. Netea, and N.P. Riksen. 2014. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology 34: 1731–1738.CrossRef Bekkering, S., J. Quintin, L.A. Joosten, J.W. van der Meer, M.G. Netea, and N.P. Riksen. 2014. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology 34: 1731–1738.CrossRef
11.
go back to reference Christ, A., P. Günther, M.A.R. Lauterbach, P. Duewell, D. Biswas, K. Pelka, C.J. Scholz, M. Oosting, K. Haendler, K. Baßler, K. Klee, J. Schulte-Schrepping, T. Ulas, S.J.C.F.M. Moorlag, V. Kumar, M.H. Park, L.A.B. Joosten, L.A. Groh, N.P. Riksen, T. Espevik, A. Schlitzer, Y. Li, M.L. Fitzgerald, M.G. Netea, J.L. Schultze, and E. Latz. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172: 162–175.CrossRef Christ, A., P. Günther, M.A.R. Lauterbach, P. Duewell, D. Biswas, K. Pelka, C.J. Scholz, M. Oosting, K. Haendler, K. Baßler, K. Klee, J. Schulte-Schrepping, T. Ulas, S.J.C.F.M. Moorlag, V. Kumar, M.H. Park, L.A.B. Joosten, L.A. Groh, N.P. Riksen, T. Espevik, A. Schlitzer, Y. Li, M.L. Fitzgerald, M.G. Netea, J.L. Schultze, and E. Latz. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172: 162–175.CrossRef
12.
go back to reference van Splunter, M., T.L.J. van Osch, S. Brugman, H.F.J. Savelkoul, L.A.B. Joosten, M.G. Netea, and R.J.J. van Neerven. 2018. Induction of trained innate immunity in human monocytes by bovine milk and milk-derived immunoglobulin G. Nutrients 10: 1378.CrossRef van Splunter, M., T.L.J. van Osch, S. Brugman, H.F.J. Savelkoul, L.A.B. Joosten, M.G. Netea, and R.J.J. van Neerven. 2018. Induction of trained innate immunity in human monocytes by bovine milk and milk-derived immunoglobulin G. Nutrients 10: 1378.CrossRef
13.
go back to reference Loss, G., M. Depner, L.H. Ulfman, R.J. van Neerven, A.J. Hose, J. Genuneit, A.M. Karvonen, A. Hyvärinen, V. Kaulek, C. Roduit, J. Weber, R. Lauener, P.I. Pfefferle, J. Pekkanen, O. Vaarala, J.C. Dalphin, J. Riedler, C. Braun-Fahrländer, E. von Mutius, and M.J. Ege. 2015. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology 135: 56–62.CrossRef Loss, G., M. Depner, L.H. Ulfman, R.J. van Neerven, A.J. Hose, J. Genuneit, A.M. Karvonen, A. Hyvärinen, V. Kaulek, C. Roduit, J. Weber, R. Lauener, P.I. Pfefferle, J. Pekkanen, O. Vaarala, J.C. Dalphin, J. Riedler, C. Braun-Fahrländer, E. von Mutius, and M.J. Ege. 2015. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology 135: 56–62.CrossRef
14.
go back to reference Waser, M., K.B. Michels, C. Bieli, H. Flöistrup, G. Pershagen, E. von Mutius, M. Ege, J. Riedler, D. Schram-Bijkerk, B. Brunekreef, M. van Hage, R. Lauener, and C. Braun-Fahrländer. 2007. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical & Experimental Allergy 37: 661–670.CrossRef Waser, M., K.B. Michels, C. Bieli, H. Flöistrup, G. Pershagen, E. von Mutius, M. Ege, J. Riedler, D. Schram-Bijkerk, B. Brunekreef, M. van Hage, R. Lauener, and C. Braun-Fahrländer. 2007. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical & Experimental Allergy 37: 661–670.CrossRef
15.
go back to reference Saeed, S., J. Quintin, H.H. Kerstens, N.A. Rao, A. Aghajanirefah, F. Matarese, S.C. Cheng, J. Ratter, K. Berentsen, M.A. van der Ent, N. Sharifi, E.M. Janssen-Megens, M. Ter Huurne, A. Mandoli, T. van Schaik, A. Ng, F. Burden, K. Downes, M. Frontini, V. Kumar, E.J. Giamarellos-Bourboulis, W.H. Ouwehand, J.M. van der Meer, L.A. Joosten, C. Wijmenga, J.H. Martens, R.J. Xavier, C. Logie, M.G. Netea, and H.G. Stunnenberg. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086.CrossRef Saeed, S., J. Quintin, H.H. Kerstens, N.A. Rao, A. Aghajanirefah, F. Matarese, S.C. Cheng, J. Ratter, K. Berentsen, M.A. van der Ent, N. Sharifi, E.M. Janssen-Megens, M. Ter Huurne, A. Mandoli, T. van Schaik, A. Ng, F. Burden, K. Downes, M. Frontini, V. Kumar, E.J. Giamarellos-Bourboulis, W.H. Ouwehand, J.M. van der Meer, L.A. Joosten, C. Wijmenga, J.H. Martens, R.J. Xavier, C. Logie, M.G. Netea, and H.G. Stunnenberg. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086.CrossRef
16.
go back to reference Novakovic, B., E. Habibi, S.Y. Wang, R.J.W. Arts, R. Davar, W. Megchelenbrink, B. Kim, T. Kuznetsova, M. Kox, J. Zwaag, F. Matarese, S.J. van Heeringen, E.M. Janssen-Megens, N. Sharifi, C. Wang, F. Keramati, V. Schoonenberg, P. Flicek, L. Clarke, P. Pickkers, S. Heath, I. Gut, M.G. Netea, J.H.A. Martens, C. Logie, and H.G. Stunnenberg. 2016. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 167: 1354–1368.CrossRef Novakovic, B., E. Habibi, S.Y. Wang, R.J.W. Arts, R. Davar, W. Megchelenbrink, B. Kim, T. Kuznetsova, M. Kox, J. Zwaag, F. Matarese, S.J. van Heeringen, E.M. Janssen-Megens, N. Sharifi, C. Wang, F. Keramati, V. Schoonenberg, P. Flicek, L. Clarke, P. Pickkers, S. Heath, I. Gut, M.G. Netea, J.H.A. Martens, C. Logie, and H.G. Stunnenberg. 2016. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 167: 1354–1368.CrossRef
17.
go back to reference Mitroulis, I., K. Ruppova, B. Wang, L.S. Chen, M. Grzybek, T. Grinenko, A. Eugster, M. Troullinaki, A. Palladini, I. Kourtzelis, A. Chatzigeorgiou, A. Schlitzer, M. Beyer, L.A.B. Joosten, B. Isermann, M. Lesche, A. Petzold, K. Simons, I. Henry, A. Dahl, J.L. Schultze, B. Wielockx, N. Zamboni, P. Mirtschink, Ü. Coskun, G. Hajishengallis, M.G. Netea, and T. Chavakis. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172: 147–161.CrossRef Mitroulis, I., K. Ruppova, B. Wang, L.S. Chen, M. Grzybek, T. Grinenko, A. Eugster, M. Troullinaki, A. Palladini, I. Kourtzelis, A. Chatzigeorgiou, A. Schlitzer, M. Beyer, L.A.B. Joosten, B. Isermann, M. Lesche, A. Petzold, K. Simons, I. Henry, A. Dahl, J.L. Schultze, B. Wielockx, N. Zamboni, P. Mirtschink, Ü. Coskun, G. Hajishengallis, M.G. Netea, and T. Chavakis. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172: 147–161.CrossRef
18.
go back to reference Friedman, M. 2016. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80.CrossRef Friedman, M. 2016. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80.CrossRef
19.
go back to reference Tian, L., J. Scholte, A. Scheurink, M. van den Berg, G. Bruggeman, E. Bruininx, P. de Vos, H.A. Schols, and H. Gruppen. 2019. Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat. International Journal of Biological Macromolecules 140: 515–521.CrossRef Tian, L., J. Scholte, A. Scheurink, M. van den Berg, G. Bruggeman, E. Bruininx, P. de Vos, H.A. Schols, and H. Gruppen. 2019. Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat. International Journal of Biological Macromolecules 140: 515–521.CrossRef
20.
go back to reference García-Montalvo, I., S.D. Méndez, N.G. Aguirre, M.M. Sánchez, D.P. Matías, and E.C. Pérez. 2018. Increasing consumption of dietary fiber complementary to the treatment of metabolic syndrome. Nutricion hospitalaria 35 (3): 582–587.PubMed García-Montalvo, I., S.D. Méndez, N.G. Aguirre, M.M. Sánchez, D.P. Matías, and E.C. Pérez. 2018. Increasing consumption of dietary fiber complementary to the treatment of metabolic syndrome. Nutricion hospitalaria 35 (3): 582–587.PubMed
21.
go back to reference Gulati, S., A. Misra, and R.M. Pandey. 2017. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians - a randomized controlled, parallel arm study. Lipids in Health and Disease 16 (1): 71.CrossRef Gulati, S., A. Misra, and R.M. Pandey. 2017. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians - a randomized controlled, parallel arm study. Lipids in Health and Disease 16 (1): 71.CrossRef
22.
go back to reference Müller, A., P.J. Rice, H.E. Ensley, P.S. Coogan, J.H. Kalbfleish, J.L. Kelley, E.J. Love, C.A. Portera, T. Ha, I.W. Browder, and D.L. Williams. 1996. Receptor binding and internalization of a water-soluble (1-->3)-beta-D-glucan biologic response modifier in two monocyte/macrophage cell lines. The Journal of Immunology 156: 3418–3425.PubMed Müller, A., P.J. Rice, H.E. Ensley, P.S. Coogan, J.H. Kalbfleish, J.L. Kelley, E.J. Love, C.A. Portera, T. Ha, I.W. Browder, and D.L. Williams. 1996. Receptor binding and internalization of a water-soluble (1-->3)-beta-D-glucan biologic response modifier in two monocyte/macrophage cell lines. The Journal of Immunology 156: 3418–3425.PubMed
23.
go back to reference Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. The Journal of Immunology 165: 618–622.CrossRef Hirschfeld, M., Y. Ma, J.H. Weis, S.N. Vogel, and J.J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. The Journal of Immunology 165: 618–622.CrossRef
24.
go back to reference Quinn, S.M., K. Cunningham, M. Raverdeau, R.J. Walsh, L. Curham, A. Malara, and K.H.G. Mills. 2019. Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell-mediated autoimmune disease. Frontiers in Immunology 10: 1109.CrossRef Quinn, S.M., K. Cunningham, M. Raverdeau, R.J. Walsh, L. Curham, A. Malara, and K.H.G. Mills. 2019. Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell-mediated autoimmune disease. Frontiers in Immunology 10: 1109.CrossRef
25.
go back to reference Ifrim, D.C., J. Quintin, L.A.B. Joosten, C. Jacobs, T. Jansen, L. Jacobs, N.A.R. Gow, D.L. Williams, J.W.M. van der Meer, and M.G. Netea. 2014. Trained Immunity or Tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21: 534–545.CrossRef Ifrim, D.C., J. Quintin, L.A.B. Joosten, C. Jacobs, T. Jansen, L. Jacobs, N.A.R. Gow, D.L. Williams, J.W.M. van der Meer, and M.G. Netea. 2014. Trained Immunity or Tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21: 534–545.CrossRef
26.
go back to reference Li, C., D. Yang, X. Cao, F. Wang, H. Jiang, H. Guo, L. Du, Q. Guo, and X. Yin. 2016. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochemical Pharmacology 113: 57–69.CrossRef Li, C., D. Yang, X. Cao, F. Wang, H. Jiang, H. Guo, L. Du, Q. Guo, and X. Yin. 2016. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochemical Pharmacology 113: 57–69.CrossRef
27.
go back to reference Zhu, X., Y.Q. Cheng, L. Du, Y. Li, F. Zhang, H. Guo, Y.W. Liu, and X.X. Yin. 20 15. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Research 29 (2): 295–302. Zhu, X., Y.Q. Cheng, L. Du, Y. Li, F. Zhang, H. Guo, Y.W. Liu, and X.X. Yin. 20 15. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Research 29 (2): 295–302.
28.
go back to reference Lund, M.E., J. To, B.A. O'Brien, and S. Donnelly. 2016. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods 430: 64–70.CrossRef Lund, M.E., J. To, B.A. O'Brien, and S. Donnelly. 2016. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods 430: 64–70.CrossRef
29.
go back to reference Domínguez-Andrés, J., B. Novakovic, Y. Li, B.P. Scicluna, M.S. Gresnigt, R.J.W. Arts, M. Oosting, S.J.C.F.M. Moorlag, L.A. Groh, J. Zwaag, R.M. Koch, R.H. Ter, L.A.B. Joosten, C. Wijmenga, A. Michelucci, T. van der Poll, M. Kox, P. Pickkers, V. Kumar, H. Stunnenberg, and M.G. Netea. 2019. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism 29 (1): 211–220.CrossRef Domínguez-Andrés, J., B. Novakovic, Y. Li, B.P. Scicluna, M.S. Gresnigt, R.J.W. Arts, M. Oosting, S.J.C.F.M. Moorlag, L.A. Groh, J. Zwaag, R.M. Koch, R.H. Ter, L.A.B. Joosten, C. Wijmenga, A. Michelucci, T. van der Poll, M. Kox, P. Pickkers, V. Kumar, H. Stunnenberg, and M.G. Netea. 2019. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism 29 (1): 211–220.CrossRef
30.
go back to reference Quintin, J., S. Saeed, J.H.A. Martens, E.J. Giamarellos-Bourboulis, D.C. Ifrim, C. Logie, L. Jacobs, T. Jansen, B.J. Kullberg, C. Wijmenga, L.A.B. Joosten, R.J. Xavier, J.W.M. van der Meer, H.G. Stunnenberg, and M.G. Netea. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe 12: 223–232.CrossRef Quintin, J., S. Saeed, J.H.A. Martens, E.J. Giamarellos-Bourboulis, D.C. Ifrim, C. Logie, L. Jacobs, T. Jansen, B.J. Kullberg, C. Wijmenga, L.A.B. Joosten, R.J. Xavier, J.W.M. van der Meer, H.G. Stunnenberg, and M.G. Netea. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe 12: 223–232.CrossRef
31.
go back to reference Auinger, A., L. Riede, G. Bothe, R. Busch, and J. Gruenwald. 2013. Yeast (1,3) -(1,6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. European Journal of Nutrition 52: 1913–1918.CrossRef Auinger, A., L. Riede, G. Bothe, R. Busch, and J. Gruenwald. 2013. Yeast (1,3) -(1,6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. European Journal of Nutrition 52: 1913–1918.CrossRef
32.
go back to reference Guggenheim, A.G., K.M. Wright, and H.L. Zwickey. 2014. Immune modulation from five major mushrooms: application to integrative oncology. Integrative Medicine: A Clinician's Journal 13: 32–44. Guggenheim, A.G., K.M. Wright, and H.L. Zwickey. 2014. Immune modulation from five major mushrooms: application to integrative oncology. Integrative Medicine: A Clinician's Journal 13: 32–44.
33.
go back to reference Moradali, M.F., H. Mostafavi, S. Ghods, and G.A. Hedjaroude. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7: 701–724.CrossRef Moradali, M.F., H. Mostafavi, S. Ghods, and G.A. Hedjaroude. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7: 701–724.CrossRef
34.
go back to reference Demir, G., H.O. Klein, N. Mandel-Molinas, and N. Tuzuner. 2007. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 7: 113–116.CrossRef Demir, G., H.O. Klein, N. Mandel-Molinas, and N. Tuzuner. 2007. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 7: 113–116.CrossRef
35.
go back to reference Wu, H., A.J. Flint, Q. Qi, R.M. van Dam, L.A. Sampson, E.B. Rimm, M.D. Holmes, W.C. Willett, F.B. Hu, and Q. Sun. 2015. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Internal Medicine 175: 373–384.CrossRef Wu, H., A.J. Flint, Q. Qi, R.M. van Dam, L.A. Sampson, E.B. Rimm, M.D. Holmes, W.C. Willett, F.B. Hu, and Q. Sun. 2015. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Internal Medicine 175: 373–384.CrossRef
36.
go back to reference Choromanska, A., J. Kulbacka, J. Harasym, M. Dubinska-Magiera, and J. Saczko. 2017. Anticancer activity of oat beta-glucan in combination with electroporation on human cancer cells. Acta Poloniae Pharmaceutica 74: 616–623.PubMed Choromanska, A., J. Kulbacka, J. Harasym, M. Dubinska-Magiera, and J. Saczko. 2017. Anticancer activity of oat beta-glucan in combination with electroporation on human cancer cells. Acta Poloniae Pharmaceutica 74: 616–623.PubMed
37.
go back to reference Choromanska, A., J. Kulbacka, J. Harasym, R. Oledzki, A. Szewczyk, and J. Saczko. 2018. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathology & Oncology Research 24: 583–592.CrossRef Choromanska, A., J. Kulbacka, J. Harasym, R. Oledzki, A. Szewczyk, and J. Saczko. 2018. High- and low-Molecular Weight oat Beta-Glucan Reveals Antitumor Activity in Human Epithelial Lung Cancer. Pathology & Oncology Research 24: 583–592.CrossRef
38.
go back to reference Garcia-Valtanen, P., R.M. Guzman-Genuino, D.L. Williams, J.D. Hayball, and K.R. Diener. 2017. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95: 601–610.CrossRef Garcia-Valtanen, P., R.M. Guzman-Genuino, D.L. Williams, J.D. Hayball, and K.R. Diener. 2017. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95: 601–610.CrossRef
39.
go back to reference Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 784: 29–33.CrossRef Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 784: 29–33.CrossRef
40.
go back to reference Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1α -mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684.CrossRef Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. mTOR- and HIF-1α -mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684.CrossRef
41.
go back to reference Arts, R.J., B. Novakovic, R. Ter Horst, A. Carvalho, S. Bekkering, E. Lachmandas, F. Rodrigues, R. Silvestre, S.C. Cheng, S.Y. Wang, E. Habibi, L.G. Gonçalves, I. Mesquita, C. Cunha, A. van Laarhoven, F.L. van de Veerdonk, D.L. Williams, J.W. van der Meer, C. Logie, and C, L. A. O'Neill, C. A. Dinarello, N. P. Riksen, R. van Crevel, C. Clish, R. A. Notebaart, L. A. Joosten, H. G. Stunnenberg, R. J. Xavier, and M. G. Netea. 2016. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism 24: 807–819. Arts, R.J., B. Novakovic, R. Ter Horst, A. Carvalho, S. Bekkering, E. Lachmandas, F. Rodrigues, R. Silvestre, S.C. Cheng, S.Y. Wang, E. Habibi, L.G. Gonçalves, I. Mesquita, C. Cunha, A. van Laarhoven, F.L. van de Veerdonk, D.L. Williams, J.W. van der Meer, C. Logie, and C, L. A. O'Neill, C. A. Dinarello, N. P. Riksen, R. van Crevel, C. Clish, R. A. Notebaart, L. A. Joosten, H. G. Stunnenberg, R. J. Xavier, and M. G. Netea. 2016. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism 24: 807–819.
Metadata
Title
Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming
Authors
Wei Pan
Shanshan Hao
Mingxuan Zheng
Danhong Lin
Pengfei Jiang
Jinxiu Zhao
Hongli Shi
Xiaoying Yang
Xiangyang Li
Yinghua Yu
Publication date
01-08-2020
Publisher
Springer US
Published in
Inflammation / Issue 4/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01211-2

Other articles of this Issue 4/2020

Inflammation 4/2020 Go to the issue