Skip to main content
Top
Published in: Inflammation 3/2020

Open Access 01-06-2020 | Obesity | Original Article

Mice Deficient in the IL-1β Activation Genes Prtn3, Elane, and Casp1 Are Protected Against the Development of Obesity-Induced NAFLD

Authors: Andreea-Manuela Mirea, Rinke Stienstra, Thirumala-Devi Kanneganti, Cees J. Tack, Triantafyllos Chavakis, Erik J.M. Toonen, Leo A.B. Joosten

Published in: Inflammation | Issue 3/2020

Login to get access

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Inflammatory pathways contribute to disease pathogenesis; however, regulation of the underlying mechanism is not completely understood. IL-1β, a pro-inflammatory cytokine, participates in the development and progression of NAFLD. To become bioactive, IL-1β requires enzymatic processing. Mechanisms that activate IL-1β include the classical NLRP3 inflammasome-caspase-1 and the neutrophil serine proteases, neutrophil elastase, and proteinase-3. Several studies have shown that both caspase-1 and the neutrophil serine proteases are important for NAFLD development. However, it is unknown whether these pathways interact and if they have a synergistic effect in promoting NAFLD. In the present study, we developed a novel and unique mouse model by intercrossing caspase-1/11 knockout mice with neutrophil elastase/proteinase-3 double knockout mice. Subsequently, these mice were examined regarding the development of high-fat diet–induced NAFLD. Our results show that mice deficient in caspase-1, neutrophil elastase, and proteinase-3 were protected from developing diet-induced weigh gain, liver steatosis, and adipose tissue inflammation when compared with controls. We conclude that pathways that process pro-IL-1β to bioactive IL-1β play an important role in promoting the development of NAFLD and obesity-induced inflammation. Targeting these pathways could have a therapeutic potential in patients with NAFLD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer. 2016. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 64 (1): 73–84.CrossRef Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer. 2016. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 64 (1): 73–84.CrossRef
2.
go back to reference Jung, U.J., and M.S. Choi. 2014. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences 15 (4): 6184–6223.CrossRef Jung, U.J., and M.S. Choi. 2014. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences 15 (4): 6184–6223.CrossRef
3.
go back to reference McPherson, S., T. Hardy, E. Henderson, A.D. Burt, C.P. Day, and Q.M. Anstee. 2015. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. Journal of Hepatology 62 (5): 1148–1155.CrossRef McPherson, S., T. Hardy, E. Henderson, A.D. Burt, C.P. Day, and Q.M. Anstee. 2015. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. Journal of Hepatology 62 (5): 1148–1155.CrossRef
4.
go back to reference Mirea, A.M., C.J. Tack, T. Chavakis, L.A.B. Joosten, and E.J.M. Toonen. 2018. IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends in Molecular Medicine 24 (5): 458–471.CrossRef Mirea, A.M., C.J. Tack, T. Chavakis, L.A.B. Joosten, and E.J.M. Toonen. 2018. IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends in Molecular Medicine 24 (5): 458–471.CrossRef
5.
go back to reference Mridha, A.R., A. Wree, A.A.B. Robertson, M.M. Yeh, C.D. Johnson, D.M. Van Rooyen, et al. 2017. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology 66 (5): 1037–1046.CrossRef Mridha, A.R., A. Wree, A.A.B. Robertson, M.M. Yeh, C.D. Johnson, D.M. Van Rooyen, et al. 2017. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology 66 (5): 1037–1046.CrossRef
6.
go back to reference Wree, A., M.D. McGeough, C.A. Pena, M. Schlattjan, H. Li, M.E. Inzaugarat, et al. 2014. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine 92 (10): 1069–1082.CrossRef Wree, A., M.D. McGeough, C.A. Pena, M. Schlattjan, H. Li, M.E. Inzaugarat, et al. 2014. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine 92 (10): 1069–1082.CrossRef
7.
8.
go back to reference Lee, H.M., J.J. Kim, H.J. Kim, M. Shong, B.J. Ku, and E.K. Jo. 2013 Jan. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62 (1): 194–204.CrossRef Lee, H.M., J.J. Kim, H.J. Kim, M. Shong, B.J. Ku, and E.K. Jo. 2013 Jan. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62 (1): 194–204.CrossRef
9.
go back to reference Kubes, P., and W.Z. Mehal. 2012. Sterile inflammation in the liver. Gastroenterology. 143 (5): 1158–1172.CrossRef Kubes, P., and W.Z. Mehal. 2012. Sterile inflammation in the liver. Gastroenterology. 143 (5): 1158–1172.CrossRef
10.
go back to reference Dixon, L.J., M. Berk, S. Thapaliya, B.G. Papouchado, and A.E. Feldstein. 2012. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Laboratory investigation; a journal of technical methods and pathology 92 (5): 713–723.CrossRef Dixon, L.J., M. Berk, S. Thapaliya, B.G. Papouchado, and A.E. Feldstein. 2012. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Laboratory investigation; a journal of technical methods and pathology 92 (5): 713–723.CrossRef
11.
go back to reference Dixon, L.J., C.A. Flask, B.G. Papouchado, A.E. Feldstein, and L.E. Nagy. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8 (2): e56100.CrossRef Dixon, L.J., C.A. Flask, B.G. Papouchado, A.E. Feldstein, and L.E. Nagy. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8 (2): e56100.CrossRef
12.
go back to reference Stienstra, R., L.A. Joosten, T. Koenen, B. van Tits, J.A. van Diepen, S.A. van den Berg, et al. 2010. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism 12 (6): 593–605.CrossRef Stienstra, R., L.A. Joosten, T. Koenen, B. van Tits, J.A. van Diepen, S.A. van den Berg, et al. 2010. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism 12 (6): 593–605.CrossRef
13.
go back to reference Pham, C.T. 2008. Neutrophil serine proteases fine-tune the inflammatory response. The International Journal of Biochemistry & Cell Biology 40 (6–7): 1317–1333.CrossRef Pham, C.T. 2008. Neutrophil serine proteases fine-tune the inflammatory response. The International Journal of Biochemistry & Cell Biology 40 (6–7): 1317–1333.CrossRef
14.
go back to reference Kettritz, R. 2016. Neutral serine proteases of neutrophils. Immunological Reviews 273 (1): 232–248.CrossRef Kettritz, R. 2016. Neutral serine proteases of neutrophils. Immunological Reviews 273 (1): 232–248.CrossRef
15.
go back to reference Korkmaz, B., M.S. Horwitz, D.E. Jenne, and F. Gauthier. 2010. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological Reviews 62 (4): 726–759.CrossRef Korkmaz, B., M.S. Horwitz, D.E. Jenne, and F. Gauthier. 2010. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological Reviews 62 (4): 726–759.CrossRef
16.
go back to reference Mansuy-Aubert, V., Q.L. Zhou, X. Xie, Z. Gong, J.Y. Huang, A.R. Khan, G. Aubert, K. Candelaria, S. Thomas, D.J. Shin, S. Booth, S.M. Baig, A. Bilal, D. Hwang, H. Zhang, R. Lovell-Badge, S.R. Smith, F.R. Awan, and Z.Y. Jiang. 2013. Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metabolism 17 (4): 534–548.CrossRef Mansuy-Aubert, V., Q.L. Zhou, X. Xie, Z. Gong, J.Y. Huang, A.R. Khan, G. Aubert, K. Candelaria, S. Thomas, D.J. Shin, S. Booth, S.M. Baig, A. Bilal, D. Hwang, H. Zhang, R. Lovell-Badge, S.R. Smith, F.R. Awan, and Z.Y. Jiang. 2013. Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metabolism 17 (4): 534–548.CrossRef
17.
go back to reference Zang, S., X. Ma, Z. Zhuang, J. Liu, D. Bian, Y. Xun, Q. Zhang, F. Zhao, W. Yang, J. Liu, Y. Luo, Y. Liu, B. Ye, D. Ye, and J. Shi. 2016. Increased ratio of neutrophil elastase to alpha1-antitrypsin is closely associated with liver inflammation in patients with nonalcoholic steatohepatitis. Clinical and Experimental Pharmacology and Physiology 43 (1): 13–21.CrossRef Zang, S., X. Ma, Z. Zhuang, J. Liu, D. Bian, Y. Xun, Q. Zhang, F. Zhao, W. Yang, J. Liu, Y. Luo, Y. Liu, B. Ye, D. Ye, and J. Shi. 2016. Increased ratio of neutrophil elastase to alpha1-antitrypsin is closely associated with liver inflammation in patients with nonalcoholic steatohepatitis. Clinical and Experimental Pharmacology and Physiology 43 (1): 13–21.CrossRef
18.
go back to reference Toonen, E.J., A.M. Mirea, C.J. Tack, R. Stienstra, D.B. Ballak, J.A. van Diepen, et al. 2016. Activation of proteinase 3 contributes to non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Molecular Medicine 22: 202–14. Toonen, E.J., A.M. Mirea, C.J. Tack, R. Stienstra, D.B. Ballak, J.A. van Diepen, et al. 2016. Activation of proteinase 3 contributes to non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Molecular Medicine 22: 202–14.
19.
go back to reference Kayagaki, N., S. Warming, M. Lamkanfi, L. Vande Walle, S. Louie, J. Dong, K. Newton, Y. Qu, J. Liu, S. Heldens, J. Zhang, W.P. Lee, M. Roose-Girma, and V.M. Dixit. 2011. Non-canonical inflammasome activation targets caspase-11. Nature. 479 (7371): 117–121.CrossRef Kayagaki, N., S. Warming, M. Lamkanfi, L. Vande Walle, S. Louie, J. Dong, K. Newton, Y. Qu, J. Liu, S. Heldens, J. Zhang, W.P. Lee, M. Roose-Girma, and V.M. Dixit. 2011. Non-canonical inflammasome activation targets caspase-11. Nature. 479 (7371): 117–121.CrossRef
20.
go back to reference Li, P., H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, and J. Salfeld. 1995. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 80 (3): 401–411.CrossRef Li, P., H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, and J. Salfeld. 1995. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 80 (3): 401–411.CrossRef
21.
go back to reference Kessenbrock, K., L. Frohlich, M. Sixt, T. Lammermann, H. Pfister, A. Bateman, et al. 2008. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. The Journal of Clinical Investigation 118 (7): 2438–2447.PubMedPubMedCentral Kessenbrock, K., L. Frohlich, M. Sixt, T. Lammermann, H. Pfister, A. Bateman, et al. 2008. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. The Journal of Clinical Investigation 118 (7): 2438–2447.PubMedPubMedCentral
22.
go back to reference Kleiner, D.E., E.M. Brunt, M. Van Natta, C. Behling, M.J. Contos, O.W. Cummings, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41 (6): 1313–1321.CrossRef Kleiner, D.E., E.M. Brunt, M. Van Natta, C. Behling, M.J. Contos, O.W. Cummings, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41 (6): 1313–1321.CrossRef
23.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001 Dec. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 25 (4): 402–408.CrossRef Livak, K.J., and T.D. Schmittgen. 2001 Dec. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 25 (4): 402–408.CrossRef
24.
go back to reference Ballestri, S., A. Lonardo, S. Bonapace, C.D. Byrne, P. Loria, and G. Targher. 2014. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World Journal of Gastroenterology 20 (7): 1724–1745.CrossRef Ballestri, S., A. Lonardo, S. Bonapace, C.D. Byrne, P. Loria, and G. Targher. 2014. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World Journal of Gastroenterology 20 (7): 1724–1745.CrossRef
25.
go back to reference Afonina, I.S., C. Muller, S.J. Martin, and R. Beyaert. 2015. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity. 42 (6): 991–1004.CrossRef Afonina, I.S., C. Muller, S.J. Martin, and R. Beyaert. 2015. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity. 42 (6): 991–1004.CrossRef
26.
go back to reference Chung, K.J., A. Chatzigeorgiou, M. Economopoulou, R. Garcia-Martin, V.I. Alexaki, I. Mitroulis, M. Nati, J. Gebler, T. Ziemssen, S.E. Goelz, J. Phieler, J.H. Lim, K.P. Karalis, T. Papayannopoulou, M. Blüher, G. Hajishengallis, and T. Chavakis. 2017. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature Immunology 18 (6): 654–664.CrossRef Chung, K.J., A. Chatzigeorgiou, M. Economopoulou, R. Garcia-Martin, V.I. Alexaki, I. Mitroulis, M. Nati, J. Gebler, T. Ziemssen, S.E. Goelz, J. Phieler, J.H. Lim, K.P. Karalis, T. Papayannopoulou, M. Blüher, G. Hajishengallis, and T. Chavakis. 2017. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature Immunology 18 (6): 654–664.CrossRef
27.
go back to reference Adolph, T.E., C. Grander, F. Grabherr, and H. Tilg. 2017. Adipokines and non-alcoholic fatty liver disease: multiple interactions. International Journal of Molecular Sciences 18 (8): 1649. Adolph, T.E., C. Grander, F. Grabherr, and H. Tilg. 2017. Adipokines and non-alcoholic fatty liver disease: multiple interactions. International Journal of Molecular Sciences 18 (8): 1649.
28.
go back to reference Bluher, M. 2016. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clinical Science (London, England) 130 (18): 1603–1614.CrossRef Bluher, M. 2016. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clinical Science (London, England) 130 (18): 1603–1614.CrossRef
29.
go back to reference Milanski, M., A.P. Arruda, A. Coope, L.M. Ignacio-Souza, C.E. Nunez, E.A. Roman, T. Romanatto, L.B. Pascoal, A.M. Caricilli, M.A. Torsoni, P.O. Prada, M.J. Saad, and L.A. Velloso. 2012. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes. 61 (6): 1455–1462.CrossRef Milanski, M., A.P. Arruda, A. Coope, L.M. Ignacio-Souza, C.E. Nunez, E.A. Roman, T. Romanatto, L.B. Pascoal, A.M. Caricilli, M.A. Torsoni, P.O. Prada, M.J. Saad, and L.A. Velloso. 2012. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes. 61 (6): 1455–1462.CrossRef
Metadata
Title
Mice Deficient in the IL-1β Activation Genes Prtn3, Elane, and Casp1 Are Protected Against the Development of Obesity-Induced NAFLD
Authors
Andreea-Manuela Mirea
Rinke Stienstra
Thirumala-Devi Kanneganti
Cees J. Tack
Triantafyllos Chavakis
Erik J.M. Toonen
Leo A.B. Joosten
Publication date
01-06-2020
Publisher
Springer US
Published in
Inflammation / Issue 3/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01190-4

Other articles of this Issue 3/2020

Inflammation 3/2020 Go to the issue