Skip to main content
Top
Published in: Inflammation 2/2020

01-04-2020 | Original Article

The Metabolic Reprogramming Profiles in the Liver Fibrosis of Mice Infected with Schistosoma japonicum

Authors: Xin-yu Qian, Wei-min Ding, Qing-qing Chen, Xin Zhang, Wen-qing Jiang, Fen-fen Sun, Xiang-yang Li, Xiao-ying Yang, Wei Pan

Published in: Inflammation | Issue 2/2020

Login to get access

Abstract

Disordered glucose and lipid metabolism contributes to the progression of several liver diseases, while the upregulation of phosphatase and tensin homology deleted on chromosome ten (PTEN), a well-known tumour suppressor gene, can improve the condition through metabolic programming. This study first characterized the metabolic profiles and the involvement of PTEN in the hepatic fibrosis induced by Schistosoma japonicum (S. japonicum) to provide a novel clue for metabolism-targeted treatment. Compared with control mice, infected mice showed infiltrated immune cells in their livers, increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and decreased glucose levels in their sera. The expression of key enzymes in the glycolytic pathway was significantly increased, and the expression of gluconeogenic genes was distinctly decreased. Moreover, the infection upregulated the hepatic expression of enzymes involved in fatty acid oxidation, which was consistent with the decreased number of lipid droplets in livers and the lowered levels of triglyceride in sera. Consistently, PTEN and its downstream signalling were significantly inhibited. In vitro, soluble egg antigen (SEA) downregulated the expression of PTEN in both the macrophage RAW264.7 cell line and the murine hepatocellular carcinoma HEP1-6 cell line, and induced a metabolic phenotype similar to the in vivo results. Overall, this study showed that S. japonicum infection induced the reprogramming of glucose and lipid metabolism in mice during the period of liver fibrosis and that SEA could act as a modulator to trigger such a metabolic switch in macrophages and hepatocytes. PTEN might play an essential role in mediating these metabolic reprogramming events.
Appendix
Available only for authorised users
Literature
1.
go back to reference Song, L.G., X.Y. Wu, M. Sacko, and Z.D. Wu. 2016. History of schistosomiasis epidemiology, current status, and challenges in China: On the road to schistosomiasis elimination. Parasitology Research 115: 4071–4081.PubMedCrossRef Song, L.G., X.Y. Wu, M. Sacko, and Z.D. Wu. 2016. History of schistosomiasis epidemiology, current status, and challenges in China: On the road to schistosomiasis elimination. Parasitology Research 115: 4071–4081.PubMedCrossRef
2.
go back to reference Mutapi, F., R. Maizels, A. Fenwick, and M. Woolhouse. 2017. Human schistosomiasis in the post mass drug administration era. The Lancet Infectious Diseases 17: e42–e48.PubMedCrossRef Mutapi, F., R. Maizels, A. Fenwick, and M. Woolhouse. 2017. Human schistosomiasis in the post mass drug administration era. The Lancet Infectious Diseases 17: e42–e48.PubMedCrossRef
3.
go back to reference Wilson, M.S., M.M. Mentink-Kane, J.T. Pesce, T.R. Ramalingam, R. Thompson, and T.A. Wynn. 2007. Immunopathology of schistosomiasis. Immunology and Cell Biology 85 (2): 148–154.PubMedCrossRef Wilson, M.S., M.M. Mentink-Kane, J.T. Pesce, T.R. Ramalingam, R. Thompson, and T.A. Wynn. 2007. Immunopathology of schistosomiasis. Immunology and Cell Biology 85 (2): 148–154.PubMedCrossRef
4.
go back to reference Kamdem, S.D., R. Moyou-Somo, F. Brombacher, and J.K. Nono. 2018. Host regulators of liver fibrosis during human schistosomiasis. Frontiers in Immunology 9: 2781.PubMedPubMedCentralCrossRef Kamdem, S.D., R. Moyou-Somo, F. Brombacher, and J.K. Nono. 2018. Host regulators of liver fibrosis during human schistosomiasis. Frontiers in Immunology 9: 2781.PubMedPubMedCentralCrossRef
6.
go back to reference Vale, N., M.J. Gouveia, G. Rinaldi, P.J. Brindley, F. Gärtner, and J.M. Correia da Costa. 2017. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrobial Agents and Chemotherapy 61 (5). Vale, N., M.J. Gouveia, G. Rinaldi, P.J. Brindley, F. Gärtner, and J.M. Correia da Costa. 2017. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrobial Agents and Chemotherapy 61 (5).
7.
go back to reference Anthony, B.J., G.A. Ramm, and D.P. McManus. 2012. Role of resident liver cells in the pathogenesis of schistosomiasis. Trends in Parasitology 28 (12): 572–579.PubMedCrossRef Anthony, B.J., G.A. Ramm, and D.P. McManus. 2012. Role of resident liver cells in the pathogenesis of schistosomiasis. Trends in Parasitology 28 (12): 572–579.PubMedCrossRef
9.
go back to reference Wang, Q., X. Chou, F. Guan, Z. Fang, S. Lu, J. Lei, Y. Li, and W. Liu. 2017. Enhanced Wnt signalling in hepatocytes is associated with Schistosoma japonicum infection and contributes to liver fibrosis. Scientific Reports 7 (1): 230.PubMedPubMedCentralCrossRef Wang, Q., X. Chou, F. Guan, Z. Fang, S. Lu, J. Lei, Y. Li, and W. Liu. 2017. Enhanced Wnt signalling in hepatocytes is associated with Schistosoma japonicum infection and contributes to liver fibrosis. Scientific Reports 7 (1): 230.PubMedPubMedCentralCrossRef
10.
go back to reference Zheng, S., P. Zhang, Y. Chen, S. Zheng, L. Zheng, and Z. Weng. 2016. Inhibition of notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization. PLoS One 11 (11): e0166808.PubMedPubMedCentralCrossRef Zheng, S., P. Zhang, Y. Chen, S. Zheng, L. Zheng, and Z. Weng. 2016. Inhibition of notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization. PLoS One 11 (11): e0166808.PubMedPubMedCentralCrossRef
11.
go back to reference Murray, P.J., J. Rathmell, and E. Pearce. 2015. SnapShot: Immunometabolism. Cell Metabolism 22 (1): 190–190.PubMedCrossRef Murray, P.J., J. Rathmell, and E. Pearce. 2015. SnapShot: Immunometabolism. Cell Metabolism 22 (1): 190–190.PubMedCrossRef
13.
14.
go back to reference Krenkel, O., and F. Tacke. 2017. Macrophages in nonalcoholic fatty liver disease: A role model of pathogenic Immunometabolism. Seminars in Liver Disease 37 (3): 189–197.PubMedCrossRef Krenkel, O., and F. Tacke. 2017. Macrophages in nonalcoholic fatty liver disease: A role model of pathogenic Immunometabolism. Seminars in Liver Disease 37 (3): 189–197.PubMedCrossRef
15.
go back to reference Kumar, V. 2018. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.PubMedCrossRef Kumar, V. 2018. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.PubMedCrossRef
16.
go back to reference Zhang, Q., Y. Lou, X.L. Bai, and T.B. Liang. 2018. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World Journal of Gastroenterology 24 (31): 3500–3512.PubMedPubMedCentralCrossRef Zhang, Q., Y. Lou, X.L. Bai, and T.B. Liang. 2018. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World Journal of Gastroenterology 24 (31): 3500–3512.PubMedPubMedCentralCrossRef
17.
go back to reference Cheng, Y., Y. Tian, J. Xia, X. Wu, Y. Yang, X. Li, C. Huang, X. Meng, T. Ma, and J. Li. 2017. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis. Toxicology and Applied Pharmacology 317: 51–62.PubMedCrossRef Cheng, Y., Y. Tian, J. Xia, X. Wu, Y. Yang, X. Li, C. Huang, X. Meng, T. Ma, and J. Li. 2017. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis. Toxicology and Applied Pharmacology 317: 51–62.PubMedCrossRef
18.
go back to reference Saha, S., I.N. Shalova, and S.K. Biswas. 2017. Metabolic regulation of macrophage phenotype and function. Immunological Reviews 280 (1): 102–111.PubMedCrossRef Saha, S., I.N. Shalova, and S.K. Biswas. 2017. Metabolic regulation of macrophage phenotype and function. Immunological Reviews 280 (1): 102–111.PubMedCrossRef
19.
go back to reference Luo, X., Y. Zhu, R. Liu, J. Song, F. Zhang, W. Zhang, Z. Xu, M. Hou, B. Yang, L. Chen, and M. Ji. 2017. Praziquantel treatment after Schistosoma japonicum infection maintains hepatic insulin sensitivity and improves glucose metabolism in mice. Parasites & Vectors 10: 453.CrossRef Luo, X., Y. Zhu, R. Liu, J. Song, F. Zhang, W. Zhang, Z. Xu, M. Hou, B. Yang, L. Chen, and M. Ji. 2017. Praziquantel treatment after Schistosoma japonicum infection maintains hepatic insulin sensitivity and improves glucose metabolism in mice. Parasites & Vectors 10: 453.CrossRef
21.
go back to reference Lee, Y.R., M. Chen, and P.P. Pandolfi. 2013. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nature Reviews. Molecular Cell Biology 19: 547–562.CrossRef Lee, Y.R., M. Chen, and P.P. Pandolfi. 2013. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nature Reviews. Molecular Cell Biology 19: 547–562.CrossRef
22.
go back to reference Smith, U. 2012. PTEN—Linking metabolism, cell growth, and cancer. The New England Journal of Medicine 367: 1061–1063.PubMedCrossRef Smith, U. 2012. PTEN—Linking metabolism, cell growth, and cancer. The New England Journal of Medicine 367: 1061–1063.PubMedCrossRef
23.
go back to reference Qiu, W., L. Federico, M. Naples, R.K. Avramoglu, R. Meshkani, J. Zhang, J. Tsai, M. Hussain, K. Dai, J. Iqbal, C.D. Kontos, and Y. Horie. 2008. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology. 48 (6): 1799–1809.PubMedPubMedCentralCrossRef Qiu, W., L. Federico, M. Naples, R.K. Avramoglu, R. Meshkani, J. Zhang, J. Tsai, M. Hussain, K. Dai, J. Iqbal, C.D. Kontos, and Y. Horie. 2008. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology. 48 (6): 1799–1809.PubMedPubMedCentralCrossRef
24.
go back to reference Garcia-Cao, I., M.S. Song, R.M. Hobbs, G. Laurent, C. Giorgi, V.C. de Boer, D. Anastasiou, K. Ito, A.T. Sasaki, L. Rameh, and A. Carracedo. 2012. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 149 (1): 49–62.PubMedPubMedCentralCrossRef Garcia-Cao, I., M.S. Song, R.M. Hobbs, G. Laurent, C. Giorgi, V.C. de Boer, D. Anastasiou, K. Ito, A.T. Sasaki, L. Rameh, and A. Carracedo. 2012. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 149 (1): 49–62.PubMedPubMedCentralCrossRef
25.
go back to reference Makboul, R., A. Refaiy, I.F. Abdelkawi, D.A. Hameed, A.A. Elderwy, M.M. Shalaby, A.S. Merseburger, and M.R. Hussein. 2016. Alterations of mTOR and PTEN protein expression in schistosomal squamous cell carcinoma and urothelial carcinoma. Pathology, Research and Practice 212 (5): 385–392.PubMedCrossRef Makboul, R., A. Refaiy, I.F. Abdelkawi, D.A. Hameed, A.A. Elderwy, M.M. Shalaby, A.S. Merseburger, and M.R. Hussein. 2016. Alterations of mTOR and PTEN protein expression in schistosomal squamous cell carcinoma and urothelial carcinoma. Pathology, Research and Practice 212 (5): 385–392.PubMedCrossRef
26.
go back to reference Zhu, J., Z. Xu, X. Chen, S. Zhou, W. Zhang, Y. Chi, W. Li, X. Song, F. Liu, and C. Su. 2014. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice. Parasites & Vectors. 7: 122.CrossRef Zhu, J., Z. Xu, X. Chen, S. Zhou, W. Zhang, Y. Chi, W. Li, X. Song, F. Liu, and C. Su. 2014. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice. Parasites & Vectors. 7: 122.CrossRef
27.
go back to reference Moltke, I., N. Grarup, M.E. Jørgensen, P. Bjerregaard, J.T. Treebak, M. Fumagalli, T.S. Korneliussen, M.A. Andersen, T.S. Nielsen, N.T. Krarup, A.P. Gjesing, J.R. Zierath, A. Linneberg, X. Wu, G. Sun, X. Jin, J. Al-Aama, J. Wang, K. Borch-Johnsen, O. Pedersen, R. Nielsen, A. Albrechtsen, and T. Hansen. 2014. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 512 (7513): 190–193.PubMedCrossRef Moltke, I., N. Grarup, M.E. Jørgensen, P. Bjerregaard, J.T. Treebak, M. Fumagalli, T.S. Korneliussen, M.A. Andersen, T.S. Nielsen, N.T. Krarup, A.P. Gjesing, J.R. Zierath, A. Linneberg, X. Wu, G. Sun, X. Jin, J. Al-Aama, J. Wang, K. Borch-Johnsen, O. Pedersen, R. Nielsen, A. Albrechtsen, and T. Hansen. 2014. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 512 (7513): 190–193.PubMedCrossRef
28.
go back to reference Wise, H.M., and M.A. Hermida. 2017. Prostate cancer, PI3K, PTEN and prognosis. Clinical Science (London) 131: 197–210.CrossRef Wise, H.M., and M.A. Hermida. 2017. Prostate cancer, PI3K, PTEN and prognosis. Clinical Science (London) 131: 197–210.CrossRef
29.
go back to reference Tian, Y., H. Li, T. Qiu, J. Dai, Y. Zhang, J. Chen, and H. Cai. 2018. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell: e12858. Tian, Y., H. Li, T. Qiu, J. Dai, Y. Zhang, J. Chen, and H. Cai. 2018. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell: e12858.
30.
go back to reference Zhang, X., T. Jin, X. Huang, X. Liu, Z. Liu, Y. Jia, and J. Hao. 2018. Effects of the tumor suppressor PTEN on biological behaviors of activated pancreatic stellate cells in pancreatic fibrosis. Experimental Cell Research 373 (1–2): 132–144.PubMedCrossRef Zhang, X., T. Jin, X. Huang, X. Liu, Z. Liu, Y. Jia, and J. Hao. 2018. Effects of the tumor suppressor PTEN on biological behaviors of activated pancreatic stellate cells in pancreatic fibrosis. Experimental Cell Research 373 (1–2): 132–144.PubMedCrossRef
31.
go back to reference Kim, J., I.E. Eltoum, M. Roh, J. Wang, and S.A. Abdulkadir. 2009. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genetics 5: e1000542.PubMedPubMedCentralCrossRef Kim, J., I.E. Eltoum, M. Roh, J. Wang, and S.A. Abdulkadir. 2009. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genetics 5: e1000542.PubMedPubMedCentralCrossRef
32.
go back to reference Benhamou, D., V. Labi, A. Getahun, E. Benchetrit, R. Dowery, K. Rajewsky, J.C. Cambier, and D. Melamed. 2018. The c-Myc/miR17-92/PTEN axis tunes PI3K activity to control expression of recombination activating genes in early B cell development. Frontiers in Immunology 9: 2715.PubMedPubMedCentralCrossRef Benhamou, D., V. Labi, A. Getahun, E. Benchetrit, R. Dowery, K. Rajewsky, J.C. Cambier, and D. Melamed. 2018. The c-Myc/miR17-92/PTEN axis tunes PI3K activity to control expression of recombination activating genes in early B cell development. Frontiers in Immunology 9: 2715.PubMedPubMedCentralCrossRef
33.
go back to reference Cummins, E.P., C.E. Keogh, and D. Crean. 2016. The role of HIF in immunity and inflammation. Molecular Aspects of Medicine 47-48: 24–34.PubMedCrossRef Cummins, E.P., C.E. Keogh, and D. Crean. 2016. The role of HIF in immunity and inflammation. Molecular Aspects of Medicine 47-48: 24–34.PubMedCrossRef
35.
go back to reference McPhee, J.B., and J.D. Schertzer. 2015. Immunometabolism of obesity and diabetes: Microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clinical Science (London, England) 129 (12): 1083–1096.CrossRef McPhee, J.B., and J.D. Schertzer. 2015. Immunometabolism of obesity and diabetes: Microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clinical Science (London, England) 129 (12): 1083–1096.CrossRef
36.
go back to reference Rodríguez-Prados, J.C., P.G. Través, J. Cuenca, D. Rico, J. Aragonés, P. Martín-Sanz, M. Cascante, and L. Boscá. 2010. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. Immunology. 185 (1): 605–614.CrossRef Rodríguez-Prados, J.C., P.G. Través, J. Cuenca, D. Rico, J. Aragonés, P. Martín-Sanz, M. Cascante, and L. Boscá. 2010. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. Immunology. 185 (1): 605–614.CrossRef
37.
go back to reference An, J., L. Zheng, S. Xie, F. Yin, X. Huo, J. Guo, and X. Zhang. 2016. Regulatory effects and mechanism of adenovirus-mediated PTEN gene on hepatic stellate cells. Digestive Diseases and Sciences 61 (4): 1107–1120.PubMedCrossRef An, J., L. Zheng, S. Xie, F. Yin, X. Huo, J. Guo, and X. Zhang. 2016. Regulatory effects and mechanism of adenovirus-mediated PTEN gene on hepatic stellate cells. Digestive Diseases and Sciences 61 (4): 1107–1120.PubMedCrossRef
38.
go back to reference Hao, L.S., X.L. Zhang, J.Y. An, J. Karlin, X.P. Tian, Z.N. Dun, S.R. Xie, and S. Chen. 2009. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis. APMIS. 117 (9): 681–691.PubMedCrossRef Hao, L.S., X.L. Zhang, J.Y. An, J. Karlin, X.P. Tian, Z.N. Dun, S.R. Xie, and S. Chen. 2009. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis. APMIS. 117 (9): 681–691.PubMedCrossRef
39.
go back to reference Chen, Y.L., X. Zhang, J. Bai, L. Gai, X.L. Ye, L. Zhang, Q. Xu, Y.X. Zhang, L. Xu, H.P. Li, and X. Ding. 2013. Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: Potential roles in the inhibition of epithelial-mesenchymal transition and fibroblast activation. Cell Death & Disease 4: e665.CrossRef Chen, Y.L., X. Zhang, J. Bai, L. Gai, X.L. Ye, L. Zhang, Q. Xu, Y.X. Zhang, L. Xu, H.P. Li, and X. Ding. 2013. Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: Potential roles in the inhibition of epithelial-mesenchymal transition and fibroblast activation. Cell Death & Disease 4: e665.CrossRef
40.
go back to reference Matsuda, S., M. Kobayashi, and Y. Kitagishi. 2013. Roles for PI3K/AKT/PTEN pathway in cell signaling of nonalcoholic fatty liver disease. ISRN Endocrinology 2013: 472432.PubMedPubMedCentralCrossRef Matsuda, S., M. Kobayashi, and Y. Kitagishi. 2013. Roles for PI3K/AKT/PTEN pathway in cell signaling of nonalcoholic fatty liver disease. ISRN Endocrinology 2013: 472432.PubMedPubMedCentralCrossRef
Metadata
Title
The Metabolic Reprogramming Profiles in the Liver Fibrosis of Mice Infected with Schistosoma japonicum
Authors
Xin-yu Qian
Wei-min Ding
Qing-qing Chen
Xin Zhang
Wen-qing Jiang
Fen-fen Sun
Xiang-yang Li
Xiao-ying Yang
Wei Pan
Publication date
01-04-2020
Publisher
Springer US
Published in
Inflammation / Issue 2/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01160-5

Other articles of this Issue 2/2020

Inflammation 2/2020 Go to the issue