Skip to main content
Top
Published in: Inflammation 2/2020

01-04-2020 | Cytokines | Original Article

Electrostatic Surface Potential of Macrophages Correlates with Their Functional Phenotype

Authors: Papiya Chakraborty, Pankaj Dipankar, Shiba Prasad Dash, Priya, Shreya Srivastava, Rajat Dhyani, Naveen Kumar Navani, Deepak Sharma, Pranita P. Sarangi

Published in: Inflammation | Issue 2/2020

Login to get access

Abstract

Macrophages exist in various functional phenotypes, which could be identified by specific surface molecules. Previous studies have shown that modulation of surface charges could alter the phagocytic function of macrophages. In this study, we show that activation of both human peripheral blood monocyte and THP-1-derived macrophages with lipopolysaccharide (LPS) or IL-1β resulted in a significant decrease in the zeta potential compared to freshly isolated monocytes and unstimulated macrophages. Interestingly, interaction with bacteria significantly increased the zeta potential of such cells irrespective of activation conditions. Similarly, IFNγ-treated pro-inflammatory macrophages showed lesser negative zeta potential compared to untreated control. A moderate reduction was also seen in IL-4-treated anti-inflammatory subtype. Additionally, in an LPS-induced systemic inflammation model, bone marrow cells isolated after 2 h of LPS injection showed significant reduction in zeta potential compared to naïve cells. Furthermore, electrostatic potential measurement of surface proteins associated with pro-inflammatory and anti-inflammatory macrophages, using in silico modeling under physiological and protonation conditions, showed that the average electrostatic potential of pro-inflammatory type surface proteins was less negative than anti-inflammatory subtype. These data suggest that the expression of different protein molecules on macrophages under different environments may contribute to the zeta potential and that this quick and low-cost technique could be used in monitoring macrophage functional phenotypes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology 5: 491.CrossRef Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology 5: 491.CrossRef
2.
go back to reference Shi, C., and E.G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology 11: 762.CrossRef Shi, C., and E.G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology 11: 762.CrossRef
3.
go back to reference Wang, N., H. Liang, and K. Zen. 2014. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in Immunology 5: 614.PubMedPubMedCentral Wang, N., H. Liang, and K. Zen. 2014. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in Immunology 5: 614.PubMedPubMedCentral
4.
go back to reference Gonzalez, A., B.L. Gomez, C. Munoz, B.H. Aristizabal, A. Restrepo, A.J. Hamilton, and L.E. Cano. 2008. Involvement of extracellular matrix proteins in the course of experimental paracoccidioidomycosis. FEMS Immunology and Medical Microbiology 53: 114–125.CrossRef Gonzalez, A., B.L. Gomez, C. Munoz, B.H. Aristizabal, A. Restrepo, A.J. Hamilton, and L.E. Cano. 2008. Involvement of extracellular matrix proteins in the course of experimental paracoccidioidomycosis. FEMS Immunology and Medical Microbiology 53: 114–125.CrossRef
5.
go back to reference Weiss, L., and R. Zeigel. 1971. Cell surface negativity and the binding of positively charged particles. Journal of Cellular Physiology 77: 179–185.CrossRef Weiss, L., and R. Zeigel. 1971. Cell surface negativity and the binding of positively charged particles. Journal of Cellular Physiology 77: 179–185.CrossRef
6.
go back to reference Salopek B. 1992. Measurement and application of zeta potential. Rud Geol Naft Zb 4(1): 147–151. Salopek B. 1992. Measurement and application of zeta potential. Rud Geol Naft Zb 4(1): 147–151.
7.
go back to reference Ribeiro, M., M. Domingues, J. Freire, N. Santos, and M. Castanho. 2012. Translocating the blood-brain barrier using electrostatics. Frontiers in Cellular Neuroscience 6. Ribeiro, M., M. Domingues, J. Freire, N. Santos, and M. Castanho. 2012. Translocating the blood-brain barrier using electrostatics. Frontiers in Cellular Neuroscience 6.
8.
go back to reference Sarangi PP, Chakraborty P, Dash SP, Ikeuchi T, Vega Sd, Ambatipudi K, Wahl L, Yamada Y.2018. Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. The FASEB Journal 32(9): 4889–4898. Sarangi PP, Chakraborty P, Dash SP, Ikeuchi T, Vega Sd, Ambatipudi K, Wahl L, Yamada Y.2018. Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. The FASEB Journal 32(9): 4889–4898.
9.
go back to reference Srivastava, S.K., V.R. Iyer, T. Ghosh, P.R. Lambadi, R. Pathania, and N.K. Navani. 2016. Isolation of a non-genomic origin fluoroquinolone responsive regulatory element using a combinatorial bioengineering approach. Nucleic Acids Research 44: 2451–2461.CrossRef Srivastava, S.K., V.R. Iyer, T. Ghosh, P.R. Lambadi, R. Pathania, and N.K. Navani. 2016. Isolation of a non-genomic origin fluoroquinolone responsive regulatory element using a combinatorial bioengineering approach. Nucleic Acids Research 44: 2451–2461.CrossRef
10.
go back to reference Gille, C., B. Spring, L. Tewes, C.F. Poets, and T. Orlikowsky. 2006. A new method to quantify phagocytosis and intracellular degradation using green fluorescent protein-labeled Escherichia coli: comparison of cord blood macrophages and peripheral blood macrophages of healthy adults. Cytometry Part A: The Journal of the International Society for Analytical Cytology 69: 152–154.CrossRef Gille, C., B. Spring, L. Tewes, C.F. Poets, and T. Orlikowsky. 2006. A new method to quantify phagocytosis and intracellular degradation using green fluorescent protein-labeled Escherichia coli: comparison of cord blood macrophages and peripheral blood macrophages of healthy adults. Cytometry Part A: The Journal of the International Society for Analytical Cytology 69: 152–154.CrossRef
11.
go back to reference Apweiler, R., A. Bairoch, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M.J. Martin, D.A. Natale, C. O’Donovan, N. Redaschi, and L.S. Yeh. 2004. UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32: D115–D119.CrossRef Apweiler, R., A. Bairoch, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M.J. Martin, D.A. Natale, C. O’Donovan, N. Redaschi, and L.S. Yeh. 2004. UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32: D115–D119.CrossRef
12.
go back to reference Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. 2006. Comparative protein structure modeling using Modeller. Current Protocols in. Chapter 5:Unit-5 6. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. 2006. Comparative protein structure modeling using Modeller. Current Protocols in. Chapter 5:Unit-5 6.
13.
go back to reference Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST. A new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRef Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST. A new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRef
14.
go back to reference Altschul, S.F., J.C. Wootton, E.M. Gertz, R. Agarwala, A. Morgulis, A.A. Schaffer, and Y.K. Yu. 2005. Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal 272: 5101–5109.CrossRef Altschul, S.F., J.C. Wootton, E.M. Gertz, R. Agarwala, A. Morgulis, A.A. Schaffer, and Y.K. Yu. 2005. Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal 272: 5101–5109.CrossRef
15.
go back to reference Berman, H.M., J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Research 28: 235–242.CrossRef Berman, H.M., J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Research 28: 235–242.CrossRef
16.
go back to reference Laskowski, R.A., M.W. Macarthur, D.S. Moss, and J.M. Thornton. 1993. Procheck - a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26: 283–291.CrossRef Laskowski, R.A., M.W. Macarthur, D.S. Moss, and J.M. Thornton. 1993. Procheck - a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26: 283–291.CrossRef
17.
go back to reference Baker, N.A., D. Sept, S. Joseph, M.J. Holst, and J.A. McCammon. 2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America 98: 10037–10041.CrossRef Baker, N.A., D. Sept, S. Joseph, M.J. Holst, and J.A. McCammon. 2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America 98: 10037–10041.CrossRef
18.
go back to reference Gordon, J.C., J.B. Myers, T. Folta, V. Shoja, L.S. Heath, and A. Onufriev. 2005. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research 33: W368–W371.CrossRef Gordon, J.C., J.B. Myers, T. Folta, V. Shoja, L.S. Heath, and A. Onufriev. 2005. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research 33: W368–W371.CrossRef
19.
go back to reference Sarkar, S., S. Witham, J. Zhang, M. Zhenirovskyy, W. Rocchia, E. Alexov, and DelPhi Web Server. 2013. A comprehensive online suite for electrostatic calculations of biological macromolecules and their complexes. Communications in Computational Physics 13: 269–284.CrossRef Sarkar, S., S. Witham, J. Zhang, M. Zhenirovskyy, W. Rocchia, E. Alexov, and DelPhi Web Server. 2013. A comprehensive online suite for electrostatic calculations of biological macromolecules and their complexes. Communications in Computational Physics 13: 269–284.CrossRef
20.
go back to reference Nagura, H., J. Asai, Y. Katsumata, and K. Kojima. 1973. Role of electric surface charge of cell membrane in phagocytosis. Pathology International 23: 279–290.CrossRef Nagura, H., J. Asai, Y. Katsumata, and K. Kojima. 1973. Role of electric surface charge of cell membrane in phagocytosis. Pathology International 23: 279–290.CrossRef
21.
go back to reference Bicker, H., C. Höflich, K. Wolk, K. Vogt, H.-D. Volk, and R. Sabat. 2008. A simple assay to measure phagocytosis of live bacteria. Clinical Chemistry 54: 911–915.CrossRef Bicker, H., C. Höflich, K. Wolk, K. Vogt, H.-D. Volk, and R. Sabat. 2008. A simple assay to measure phagocytosis of live bacteria. Clinical Chemistry 54: 911–915.CrossRef
22.
go back to reference Cassol, E., L. Cassetta, C. Rizzi, M. Alfano, and G. Poli. 2009. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. Journal of Immunology 182: 6237–6246.CrossRef Cassol, E., L. Cassetta, C. Rizzi, M. Alfano, and G. Poli. 2009. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. Journal of Immunology 182: 6237–6246.CrossRef
23.
go back to reference Stöger, J.L., M.J. Gijbels, S. van der Velden, M. Manca, C.M. van der Loos, E.A. Biessen, M.J. Daemen, E. Lutgens, and M.P. de Winther. 2012. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225: 461–468.CrossRef Stöger, J.L., M.J. Gijbels, S. van der Velden, M. Manca, C.M. van der Loos, E.A. Biessen, M.J. Daemen, E. Lutgens, and M.P. de Winther. 2012. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225: 461–468.CrossRef
24.
go back to reference Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.CrossRef Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.CrossRef
25.
go back to reference Rey-Giraud, F., M. Hafner, and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7: e42656.CrossRef Rey-Giraud, F., M. Hafner, and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7: e42656.CrossRef
26.
go back to reference Saha, B., J.C. Bruneau, K. Kodys, and G. Szabo. 2015. Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. Journal of Immunology 194: 3079–3087.CrossRef Saha, B., J.C. Bruneau, K. Kodys, and G. Szabo. 2015. Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. Journal of Immunology 194: 3079–3087.CrossRef
27.
go back to reference Tarique, A.A., J. Logan, E. Thomas, P.G. Holt, P.D. Sly, and E. Fantino. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 676–688.CrossRef Tarique, A.A., J. Logan, E. Thomas, P.G. Holt, P.D. Sly, and E. Fantino. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 676–688.CrossRef
28.
go back to reference Beyer, M., M.R. Mallmann, J. Xue, A. Staratschek-Jox, D. Vorholt, W. Krebs, D. Sommer, J. Sander, C. Mertens, A. Nino-Castro, et al. 2012. High-resolution transcriptome of human macrophages. PLoS One 7: e45466.CrossRef Beyer, M., M.R. Mallmann, J. Xue, A. Staratschek-Jox, D. Vorholt, W. Krebs, D. Sommer, J. Sander, C. Mertens, A. Nino-Castro, et al. 2012. High-resolution transcriptome of human macrophages. PLoS One 7: e45466.CrossRef
29.
go back to reference Lee, J., H. Tam, L. Adler, A. Ilstad-Minnihan, C. Macaubas, and E.D. Mellins. 2017. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One 12: e0183594.CrossRef Lee, J., H. Tam, L. Adler, A. Ilstad-Minnihan, C. Macaubas, and E.D. Mellins. 2017. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One 12: e0183594.CrossRef
30.
go back to reference Magatti, M., E. Vertua, S. De Munari, M. Caro, M. Caruso, A. Silini, M. Delgado, and O. Parolini. 2017. Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. Journal of Tissue Engineering and Regenerative Medicine 11: 2895–2911.CrossRef Magatti, M., E. Vertua, S. De Munari, M. Caro, M. Caruso, A. Silini, M. Delgado, and O. Parolini. 2017. Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. Journal of Tissue Engineering and Regenerative Medicine 11: 2895–2911.CrossRef
31.
go back to reference Wang, J., Z. Cao, X.M. Zhang, M. Nakamura, M. Sun, J. Hartman, R.A. Harris, Y. Sun, and Y. Cao. 2015. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Research 75: 306–315.CrossRef Wang, J., Z. Cao, X.M. Zhang, M. Nakamura, M. Sun, J. Hartman, R.A. Harris, Y. Sun, and Y. Cao. 2015. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Research 75: 306–315.CrossRef
32.
go back to reference Bellocq, A., S. Suberville, C. Philippe, F. Bertrand, J. Perez, B. Fouqueray, G. Cherqui, and L. Baud. 1998. Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. Journal of Biological Chemistry 273: 5086–5092.CrossRef Bellocq, A., S. Suberville, C. Philippe, F. Bertrand, J. Perez, B. Fouqueray, G. Cherqui, and L. Baud. 1998. Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. Journal of Biological Chemistry 273: 5086–5092.CrossRef
33.
go back to reference Riho, S., C. Fernando, A. Santos, T.M. Carvalho, and W. Souza. 1987. Surface charge of resident, elicited, and activated mouse peritoneal macrophages. Journal of Leukocyte Biology 41: 143–149.CrossRef Riho, S., C. Fernando, A. Santos, T.M. Carvalho, and W. Souza. 1987. Surface charge of resident, elicited, and activated mouse peritoneal macrophages. Journal of Leukocyte Biology 41: 143–149.CrossRef
34.
go back to reference Sillero, A., and J.M. Ribeiro. 1989. Isoelectric points of proteins: theoretical determination. Analytical Biochemistry 179: 319–325.CrossRef Sillero, A., and J.M. Ribeiro. 1989. Isoelectric points of proteins: theoretical determination. Analytical Biochemistry 179: 319–325.CrossRef
35.
go back to reference Wu, T.-T., T.-L. Chen, and R.-M. Chen. 2009. Lipopolysaccharide triggers macrophage activation of inflammatory cytokine expression, chemotaxis, phagocytosis, and oxidative ability via a toll-like receptor 4-dependent pathway: validated by RNA interference. Toxicology Letters 191: 195–202.CrossRef Wu, T.-T., T.-L. Chen, and R.-M. Chen. 2009. Lipopolysaccharide triggers macrophage activation of inflammatory cytokine expression, chemotaxis, phagocytosis, and oxidative ability via a toll-like receptor 4-dependent pathway: validated by RNA interference. Toxicology Letters 191: 195–202.CrossRef
36.
go back to reference Bondar, O.V., D. Saifullina, I. Shakhmaeva, I. Mavlyutova, and T. Abdullin. 2012. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Naturae (англоязычная версия) 4. Bondar, O.V., D. Saifullina, I. Shakhmaeva, I. Mavlyutova, and T. Abdullin. 2012. Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Naturae (англоязычная версия) 4.
Metadata
Title
Electrostatic Surface Potential of Macrophages Correlates with Their Functional Phenotype
Authors
Papiya Chakraborty
Pankaj Dipankar
Shiba Prasad Dash
Priya
Shreya Srivastava
Rajat Dhyani
Naveen Kumar Navani
Deepak Sharma
Pranita P. Sarangi
Publication date
01-04-2020
Publisher
Springer US
Keyword
Cytokines
Published in
Inflammation / Issue 2/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01146-3

Other articles of this Issue 2/2020

Inflammation 2/2020 Go to the issue