Skip to main content
Top
Published in: Inflammation 6/2019

01-12-2019 | Original Article

Catalase S-Glutathionylation by NOX2 and Mitochondrial-Derived ROS Adversely Affects Mice and Human Neutrophil Survival

Authors: Sheela Nagarkoti, Megha Dubey, Samreen Sadaf, Deepika Awasthi, Tulika Chandra, Kumaravelu Jagavelu, Sachin Kumar, Madhu Dikshit

Published in: Inflammation | Issue 6/2019

Login to get access

Abstract

Neutrophil survival and oxidative stress during inflammatory conditions are linked to tissue damage. The present study explores less understood role of catalase, the enzyme catalysing hydrogen peroxide decomposition, in neutrophil survival/death. Importantly, inhibition of catalase activity following S-glutathionylation in the PMA, NO, or zymosan-activated neutrophils or treatment with catalase inhibitor led to neutrophil death. On the contrary, introducing reducing environment by TCEP rescued catalase activity and significantly improved neutrophil survival. Furthermore, augmentation in ROS generation by NOX-2 activation or induction of mitochondrial ROS by Antimycin-A induced catalase S-glutathionylation and cell death, which was prevented in the neutrophil cytosolic factor1 (NCF-1-/-) cells or was rescued by MitoTEMPO, a mitochondrial ROS scavenger, thus, suggesting a correlation between catalase S-glutathionylation/activity inhibition and reduced neutrophil survival. Altogether, enhanced NOX2 activation/mitochondrial dysfunction led to reduced survival of human and mice neutrophils, due to H2O2 accumulation, S-glutathionylation of catalase, and reduction in its enzymatic activity. The present study thus demonstrated mitigation of catalase activity under oxidative stress-impacted neutrophil survival.
Appendix
Available only for authorised users
Literature
1.
go back to reference McCracken, J.M., and L.A. Allen. 2014. Regulation of human neutrophil apoptosis and lifespan in health and disease. Journal of Cell Death 7: 15–23.PubMedPubMedCentral McCracken, J.M., and L.A. Allen. 2014. Regulation of human neutrophil apoptosis and lifespan in health and disease. Journal of Cell Death 7: 15–23.PubMedPubMedCentral
2.
go back to reference Albright, C.D., R.I. Salganik, C.N. Craciunescu, M.H. Mar, and S.H. Zeisel. 2003. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. Journal of Cellular Biochemistry 89: 254–261.PubMed Albright, C.D., R.I. Salganik, C.N. Craciunescu, M.H. Mar, and S.H. Zeisel. 2003. Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. Journal of Cellular Biochemistry 89: 254–261.PubMed
3.
go back to reference Carneiro, M.B.H., E.H. Roma, A.J. Ranson, N.A. Doria, A. Debrabant, D.L. Sacks, L.Q. Vieira, and N.C. Peters. 2018. NOX2-derived reactive oxygen species control inflammation during Leishmania amazonensis infection by mediating infection-induced neutrophil apoptosis. Journal of Immunology 200: 196–208. Carneiro, M.B.H., E.H. Roma, A.J. Ranson, N.A. Doria, A. Debrabant, D.L. Sacks, L.Q. Vieira, and N.C. Peters. 2018. NOX2-derived reactive oxygen species control inflammation during Leishmania amazonensis infection by mediating infection-induced neutrophil apoptosis. Journal of Immunology 200: 196–208.
4.
go back to reference Slater, A.F., C.S. Nobel, and S. Orrenius. 1995. The role of intracellular oxidants in apoptosis. Biochimica et Biophysica Acta 1271: 59–62.PubMed Slater, A.F., C.S. Nobel, and S. Orrenius. 1995. The role of intracellular oxidants in apoptosis. Biochimica et Biophysica Acta 1271: 59–62.PubMed
5.
go back to reference Xu, Y., F. Loison, and H.R. Luo. 2010. Neutrophil spontaneous death is mediated by down-regulation of autocrine signaling through GPCR, PI3Kgamma, ROS, and actin. Proceedings of the National Academy of Sciences of the United States of America 107: 2950–2955.PubMedPubMedCentral Xu, Y., F. Loison, and H.R. Luo. 2010. Neutrophil spontaneous death is mediated by down-regulation of autocrine signaling through GPCR, PI3Kgamma, ROS, and actin. Proceedings of the National Academy of Sciences of the United States of America 107: 2950–2955.PubMedPubMedCentral
6.
go back to reference Johnson, T.M., Z.X. Yu, V.J. Ferrans, R.A. Lowenstein, and T. Finkel. 1996. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America 93: 11848–11852.PubMedPubMedCentral Johnson, T.M., Z.X. Yu, V.J. Ferrans, R.A. Lowenstein, and T. Finkel. 1996. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America 93: 11848–11852.PubMedPubMedCentral
7.
go back to reference Awasthi, D., S. Nagarkoti, A. Kumar, M. Dubey, A.K. Singh, P. Pathak, T. Chandra, M.K. Barthwal, and M. Dikshit. 2016. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radical Biology & Medicine 93: 190–203. Awasthi, D., S. Nagarkoti, A. Kumar, M. Dubey, A.K. Singh, P. Pathak, T. Chandra, M.K. Barthwal, and M. Dikshit. 2016. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radical Biology & Medicine 93: 190–203.
8.
go back to reference Abdel-Daim, M.M., N.I. Zakhary, L. Aleya, S.G. Bungau, R.A. Bohara, and N.J. Siddiqi. 2018. Aging, metabolic, and degenerative disorders: biomedical value of antioxidants. Oxidative Medicine and Cellular Longevity 2018: 2098123.PubMedPubMedCentral Abdel-Daim, M.M., N.I. Zakhary, L. Aleya, S.G. Bungau, R.A. Bohara, and N.J. Siddiqi. 2018. Aging, metabolic, and degenerative disorders: biomedical value of antioxidants. Oxidative Medicine and Cellular Longevity 2018: 2098123.PubMedPubMedCentral
9.
go back to reference Abdel Daim, M., O. Eltawil, G. Md Ashraf, S. Bungau, and A. Atanasov. 2018. Applications of antioxidants in metabolic disorders and degenerative diseases: mechanistic approach. Oxidative Medicine and Cellular Longevity 2019. https://doi.org/10.1155/2019/4179676 Abdel Daim, M., O. Eltawil, G. Md Ashraf, S. Bungau, and A. Atanasov. 2018. Applications of antioxidants in metabolic disorders and degenerative diseases: mechanistic approach. Oxidative Medicine and Cellular Longevity 2019. https://​doi.​org/​10.​1155/​2019/​4179676
10.
go back to reference Yeung, A.W.K., N.T. Tzvetkov, O.S. El-Tawil, S.G. Bungau, M.M. Abdel-Daim, and A.G. Atanasov. 2019. Antioxidants: scientific literature landscape analysis. Oxidative Medicine and Cellular Longevity 2019: 8278454.PubMedPubMedCentral Yeung, A.W.K., N.T. Tzvetkov, O.S. El-Tawil, S.G. Bungau, M.M. Abdel-Daim, and A.G. Atanasov. 2019. Antioxidants: scientific literature landscape analysis. Oxidative Medicine and Cellular Longevity 2019: 8278454.PubMedPubMedCentral
11.
go back to reference Hawkins, R.A., K. Sangster, and M.J. Arends. 1998. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. The Journal of Pathology 185: 61–70.PubMed Hawkins, R.A., K. Sangster, and M.J. Arends. 1998. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. The Journal of Pathology 185: 61–70.PubMed
12.
go back to reference Takahashi, H., N. Kosaka, and S. Nakagawa. 1998. Alpha-tocopherol protects PC12 cells from hyperoxia-induced apoptosis. Journal of Neuroscience Research 52: 184–191.PubMed Takahashi, H., N. Kosaka, and S. Nakagawa. 1998. Alpha-tocopherol protects PC12 cells from hyperoxia-induced apoptosis. Journal of Neuroscience Research 52: 184–191.PubMed
13.
go back to reference Salganik, R.I., C.D. Albright, J. Rodgers, J. Kim, S.H. Zeisel, M.S. Sivashinskiy, and T. van Dyke. 2000. Dietary antioxidant depletion: enhancement of tumor apoptosis and inhibition of brain tumor growth in transgenic mice. Carcinogenesis 21: 909–914.PubMed Salganik, R.I., C.D. Albright, J. Rodgers, J. Kim, S.H. Zeisel, M.S. Sivashinskiy, and T. van Dyke. 2000. Dietary antioxidant depletion: enhancement of tumor apoptosis and inhibition of brain tumor growth in transgenic mice. Carcinogenesis 21: 909–914.PubMed
14.
go back to reference Abdel-Daim, M.M., K. Abo-El-Sooud, L. Aleya, S.G. Bungau, A. Najda, and R. Saluja. 2018. Alleviation of drugs and chemicals toxicity: biomedical value of antioxidants. Oxidative Medicine and Cellular Longevity 2018: 6276438.PubMedPubMedCentral Abdel-Daim, M.M., K. Abo-El-Sooud, L. Aleya, S.G. Bungau, A. Najda, and R. Saluja. 2018. Alleviation of drugs and chemicals toxicity: biomedical value of antioxidants. Oxidative Medicine and Cellular Longevity 2018: 6276438.PubMedPubMedCentral
15.
go back to reference Raducan, A., A.R. Cantemir, M. Puiu, and D. Oancea. 2012. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess and Biosystems Engineering 35: 1523–1530.PubMed Raducan, A., A.R. Cantemir, M. Puiu, and D. Oancea. 2012. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess and Biosystems Engineering 35: 1523–1530.PubMed
16.
go back to reference Kinnula, V.L., Y. Soini, K. Kvist-Makela, E.R. Savolainen, and P. Koistinen. 2002. Antioxidant defense mechanisms in human neutrophils. Antioxidants & Redox Signaling 4: 27–34. Kinnula, V.L., Y. Soini, K. Kvist-Makela, E.R. Savolainen, and P. Koistinen. 2002. Antioxidant defense mechanisms in human neutrophils. Antioxidants & Redox Signaling 4: 27–34.
17.
go back to reference Maianski, N.A., J. Geissler, S.M. Srinivasula, E.S. Alnemri, D. Roos, and T.W. Kuijpers. 2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death and Differentiation 11: 143–153.PubMed Maianski, N.A., J. Geissler, S.M. Srinivasula, E.S. Alnemri, D. Roos, and T.W. Kuijpers. 2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death and Differentiation 11: 143–153.PubMed
18.
go back to reference van Raam, B.J., W. Sluiter, E. de Wit, D. Roos, A.J. Verhoeven, and T.W. Kuijpers. 2008. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3: e2013.PubMedPubMedCentral van Raam, B.J., W. Sluiter, E. de Wit, D. Roos, A.J. Verhoeven, and T.W. Kuijpers. 2008. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3: e2013.PubMedPubMedCentral
19.
go back to reference Li, X., P. Fang, J. Mai, E.T. Choi, H. Wang, and X.F. Yang. 2013. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology 6: 19. Li, X., P. Fang, J. Mai, E.T. Choi, H. Wang, and X.F. Yang. 2013. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology 6: 19.
20.
go back to reference Orrenius, S., V. Gogvadze, and B. Zhivotovsky. 2007. Mitochondrial oxidative stress: implications for cell death. Annual Review of Pharmacology and Toxicology 47: 143–183.PubMed Orrenius, S., V. Gogvadze, and B. Zhivotovsky. 2007. Mitochondrial oxidative stress: implications for cell death. Annual Review of Pharmacology and Toxicology 47: 143–183.PubMed
21.
go back to reference Kalogeris, T., Y. Bao, and R.J. Korthuis. 2014. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2: 702–714.PubMedPubMedCentral Kalogeris, T., Y. Bao, and R.J. Korthuis. 2014. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2: 702–714.PubMedPubMedCentral
22.
go back to reference Cairns, R.A., I.S. Harris, and T.W. Mak. 2011. Regulation of cancer cell metabolism. Nature Reviews Cancer 11: 85–95.PubMed Cairns, R.A., I.S. Harris, and T.W. Mak. 2011. Regulation of cancer cell metabolism. Nature Reviews Cancer 11: 85–95.PubMed
23.
go back to reference Sanz, A. 2016. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochimica et Biophysica Acta 1857: 1116–1126.PubMed Sanz, A. 2016. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochimica et Biophysica Acta 1857: 1116–1126.PubMed
24.
go back to reference Madamanchi, N.R., and M.S. Runge. 2007. Mitochondrial dysfunction in atherosclerosis. Circulation Research 100: 460–473.PubMed Madamanchi, N.R., and M.S. Runge. 2007. Mitochondrial dysfunction in atherosclerosis. Circulation Research 100: 460–473.PubMed
25.
go back to reference Ohashi, M., M.S. Runge, F.M. Faraci, and D.D. Heistad. 2006. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 2331–2336.PubMed Ohashi, M., M.S. Runge, F.M. Faraci, and D.D. Heistad. 2006. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 2331–2336.PubMed
26.
go back to reference Abdel-Daim, M.M., Y.M. Moustafa, M. Umezawa, K.V. Ramana, and E. Azzini. 2017. Applications of antioxidants in ameliorating drugs and xenobiotics toxicity: mechanistic approach. Oxidative Medicine and Cellular Longevity 2017: 4565127.PubMedPubMedCentral Abdel-Daim, M.M., Y.M. Moustafa, M. Umezawa, K.V. Ramana, and E. Azzini. 2017. Applications of antioxidants in ameliorating drugs and xenobiotics toxicity: mechanistic approach. Oxidative Medicine and Cellular Longevity 2017: 4565127.PubMedPubMedCentral
27.
go back to reference Nagarkoti, S., M. Dubey, D. Awasthi, V. Kumar, T. Chandra, S. Kumar, and M. Dikshit. 2018. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Biochimica et Biophysica Acta 1865: 444–454.PubMed Nagarkoti, S., M. Dubey, D. Awasthi, V. Kumar, T. Chandra, S. Kumar, and M. Dikshit. 2018. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Biochimica et Biophysica Acta 1865: 444–454.PubMed
28.
go back to reference Ivanovic-Matic, S., D. Bogojevic, V. Martinovic, A. Petrovic, S. Jovanovic-Stojanov, G. Poznanovic, et al. 2014. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy. Journal of Physiology and Biochemistry 70: 947–959.PubMed Ivanovic-Matic, S., D. Bogojevic, V. Martinovic, A. Petrovic, S. Jovanovic-Stojanov, G. Poznanovic, et al. 2014. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy. Journal of Physiology and Biochemistry 70: 947–959.PubMed
29.
go back to reference Wang, W., M. Adachi, R. Kawamura, H. Sakamoto, T. Hayashi, T. Ishida, K. Imai, and Y. Shinomura. 2006. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis : an international journal on programmed cell death 11: 2225–2235. Wang, W., M. Adachi, R. Kawamura, H. Sakamoto, T. Hayashi, T. Ishida, K. Imai, and Y. Shinomura. 2006. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis : an international journal on programmed cell death 11: 2225–2235.
30.
go back to reference Gurgul, E., S. Lortz, M. Tiedge, A. Jorns, and S. Lenzen. 2004. Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes 53: 2271–2280.PubMed Gurgul, E., S. Lortz, M. Tiedge, A. Jorns, and S. Lenzen. 2004. Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes 53: 2271–2280.PubMed
31.
go back to reference Izawa, S., Y. Inoue, and A. Kimura. 1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. The Biochemical Journal 320 (Pt 1): 61–67.PubMedPubMedCentral Izawa, S., Y. Inoue, and A. Kimura. 1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. The Biochemical Journal 320 (Pt 1): 61–67.PubMedPubMedCentral
32.
go back to reference Goth, L., A. Lenkey, and W.N. Bigler. 2001. Blood catalase deficiency and diabetes in Hungary. Diabetes Care 24: 1839–1840.PubMed Goth, L., A. Lenkey, and W.N. Bigler. 2001. Blood catalase deficiency and diabetes in Hungary. Diabetes Care 24: 1839–1840.PubMed
33.
go back to reference Ogata, M., D.H. Wang, and K. Ogino. 2008. Mammalian acatalasemia: the perspectives of bioinformatics and genetic toxicology. Acta Medica Okayama 62: 345–361.PubMed Ogata, M., D.H. Wang, and K. Ogino. 2008. Mammalian acatalasemia: the perspectives of bioinformatics and genetic toxicology. Acta Medica Okayama 62: 345–361.PubMed
34.
go back to reference Komosinska-Vassev, K., K. Olczyk, P. Olczyk, and K. Winsz-Szczotka. 2005. Effects of metabolic control and vascular complications on indices of oxidative stress in type 2 diabetic patients. Diabetes Research and Clinical Practice 68: 207–216.PubMed Komosinska-Vassev, K., K. Olczyk, P. Olczyk, and K. Winsz-Szczotka. 2005. Effects of metabolic control and vascular complications on indices of oxidative stress in type 2 diabetic patients. Diabetes Research and Clinical Practice 68: 207–216.PubMed
35.
go back to reference Sethi, S., and M. Dikshit. 2000. Modulation of polymorphonuclear leukocytes function by nitric oxide. Thrombosis Research 100: 223–247.PubMed Sethi, S., and M. Dikshit. 2000. Modulation of polymorphonuclear leukocytes function by nitric oxide. Thrombosis Research 100: 223–247.PubMed
36.
go back to reference Cowland, J.B., and N. Borregaard. 1999. Isolation of neutrophil precursors from bone marrow for biochemical and transcriptional analysis. Journal of Immunological Methods 232: 191–200.PubMed Cowland, J.B., and N. Borregaard. 1999. Isolation of neutrophil precursors from bone marrow for biochemical and transcriptional analysis. Journal of Immunological Methods 232: 191–200.PubMed
37.
go back to reference Dubey, M., S. Nagarkoti, D. Awasthi, A.K. Singh, T. Chandra, J. Kumaravelu, M.K. Barthwal, and M. Dikshit. 2016. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death & Disease 7: e2348. Dubey, M., S. Nagarkoti, D. Awasthi, A.K. Singh, T. Chandra, J. Kumaravelu, M.K. Barthwal, and M. Dikshit. 2016. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death & Disease 7: e2348.
38.
go back to reference Li, Y., and H.E. Schellhorn. 2007. Rapid kinetic microassay for catalase activity. Journal of Biomolecular Techniques 18: 185–187.PubMed Li, Y., and H.E. Schellhorn. 2007. Rapid kinetic microassay for catalase activity. Journal of Biomolecular Techniques 18: 185–187.PubMed
39.
go back to reference Pillai, D.N., and J.W. Earl. 1991. Quality assurance for biogenic amines with authentic patient specimens. Pathology 23: 11–16.PubMed Pillai, D.N., and J.W. Earl. 1991. Quality assurance for biogenic amines with authentic patient specimens. Pathology 23: 11–16.PubMed
40.
go back to reference Lugli, E., L. Troiano, R. Ferraresi, E. Roat, N. Prada, M. Nasi, et al. 2005. Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry Part A : the Journal of the International Society for Analytical Cytology 68: 28–35. Lugli, E., L. Troiano, R. Ferraresi, E. Roat, N. Prada, M. Nasi, et al. 2005. Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry Part A : the Journal of the International Society for Analytical Cytology 68: 28–35.
41.
go back to reference Dubey, M., A.K. Singh, D. Awasthi, S. Nagarkoti, S. Kumar, W. Ali, T. Chandra, V. Kumar, M.K. Barthwal, K. Jagavelu, F.J. Sánchez-Gómez, S. Lamas, and M. Dikshit. 2015. L-Plastin S-glutathionylation promotes reduced binding to beta-actin and affects neutrophil functions. Free Radical Biology & Medicine 86: 1–15. Dubey, M., A.K. Singh, D. Awasthi, S. Nagarkoti, S. Kumar, W. Ali, T. Chandra, V. Kumar, M.K. Barthwal, K. Jagavelu, F.J. Sánchez-Gómez, S. Lamas, and M. Dikshit. 2015. L-Plastin S-glutathionylation promotes reduced binding to beta-actin and affects neutrophil functions. Free Radical Biology & Medicine 86: 1–15.
42.
go back to reference Tsurubuchi, T., Y. Aratani, N. Maeda, and H. Koyama. 2001. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. Journal of Leukocyte Biology 70: 52–58.PubMed Tsurubuchi, T., Y. Aratani, N. Maeda, and H. Koyama. 2001. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. Journal of Leukocyte Biology 70: 52–58.PubMed
43.
go back to reference Saito, T., H. Takahashi, H. Doken, H. Koyama, and Y. Aratani. 2005. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Bioscience, Biotechnology, and Biochemistry 69: 2207–2212.PubMed Saito, T., H. Takahashi, H. Doken, H. Koyama, and Y. Aratani. 2005. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Bioscience, Biotechnology, and Biochemistry 69: 2207–2212.PubMed
44.
go back to reference Kohnert, K.D., E.J. Freyse, and E. Salzsieder. 2012. Glycaemic variability and pancreatic beta-cell dysfunction. Current Diabetes Reviews 8: 345–354.PubMed Kohnert, K.D., E.J. Freyse, and E. Salzsieder. 2012. Glycaemic variability and pancreatic beta-cell dysfunction. Current Diabetes Reviews 8: 345–354.PubMed
45.
go back to reference Sveinbjornsson, B., R. Olsen, O.M. Seternes, and R. Seljelid. 1996. Macrophage cytotoxicity against murine meth a sarcoma involves nitric oxide-mediated apoptosis. Biochemical and Biophysical Research Communications 223: 643–649.PubMed Sveinbjornsson, B., R. Olsen, O.M. Seternes, and R. Seljelid. 1996. Macrophage cytotoxicity against murine meth a sarcoma involves nitric oxide-mediated apoptosis. Biochemical and Biophysical Research Communications 223: 643–649.PubMed
46.
go back to reference Shen, X., L. Yang, S. Yan, W. Wei, L. Liang, H. Zheng, and X. Cai. 2014. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in betaTC6 cells. Metabolism, Clinical and Experimental 63: 335–351. Shen, X., L. Yang, S. Yan, W. Wei, L. Liang, H. Zheng, and X. Cai. 2014. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in betaTC6 cells. Metabolism, Clinical and Experimental 63: 335–351.
47.
go back to reference Wu, J.Z., C.C. Cheng, L.L. Shen, Z.K. Wang, S.B. Wu, W.L. Li, S.H. Chen, R.P. Zhou, and P.H. Qiu. 2014. Synthetic chalcones with potent antioxidant ability on H(2)O(2)-induced apoptosis in PC12 cells. International Journal of Molecular Sciences 15: 18525–18539.PubMedPubMedCentral Wu, J.Z., C.C. Cheng, L.L. Shen, Z.K. Wang, S.B. Wu, W.L. Li, S.H. Chen, R.P. Zhou, and P.H. Qiu. 2014. Synthetic chalcones with potent antioxidant ability on H(2)O(2)-induced apoptosis in PC12 cells. International Journal of Molecular Sciences 15: 18525–18539.PubMedPubMedCentral
48.
go back to reference Jawaid, P., M. Rehman, Y. Yoshihisa, P. Li, Q. Zhao, M.A. Hassan, et al. 2014. Effects of SOD/catalase mimetic platinum nanoparticles on radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis : an international journal on programmed cell death 19: 1006–1016. Jawaid, P., M. Rehman, Y. Yoshihisa, P. Li, Q. Zhao, M.A. Hassan, et al. 2014. Effects of SOD/catalase mimetic platinum nanoparticles on radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis : an international journal on programmed cell death 19: 1006–1016.
49.
go back to reference Song, L.L., Y.Y. Tu, L. Xia, W.W. Wang, W. Wei, C.M. Ma, D.H. Wen, H. Lei, H.Z. Xu, and Y.L. Wu. 2014. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells. PLoS One 9: e104985.PubMedPubMedCentral Song, L.L., Y.Y. Tu, L. Xia, W.W. Wang, W. Wei, C.M. Ma, D.H. Wen, H. Lei, H.Z. Xu, and Y.L. Wu. 2014. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells. PLoS One 9: e104985.PubMedPubMedCentral
50.
go back to reference Goth, L., T. Nagy, and M. Kaplar. 2015. Acatalasemia and type 2 diabetes mellitus. Orvosi Hetilap 156: 393–398.PubMed Goth, L., T. Nagy, and M. Kaplar. 2015. Acatalasemia and type 2 diabetes mellitus. Orvosi Hetilap 156: 393–398.PubMed
51.
go back to reference Wagner, B.A., B.E. Britigan, K.J. Reszka, M.L. McCormick, and C.P. Burns. 2002. Hydrogen peroxide-induced apoptosis of HL-60 human leukemia cells is mediated by the oxidants hypochlorous acid and chloramines. Archives of Biochemistry and Biophysics 401: 223–234.PubMed Wagner, B.A., B.E. Britigan, K.J. Reszka, M.L. McCormick, and C.P. Burns. 2002. Hydrogen peroxide-induced apoptosis of HL-60 human leukemia cells is mediated by the oxidants hypochlorous acid and chloramines. Archives of Biochemistry and Biophysics 401: 223–234.PubMed
52.
go back to reference Ding, G.R., T. Nakahara, H. Hirose, S. Koyama, Y. Takashima, and J. Miyakoshi. 2004. Extremely low frequency magnetic fields and the promotion of H2O2-induced cell death in HL-60 cells. International Journal of Radiation Biology 80: 317–324.PubMed Ding, G.R., T. Nakahara, H. Hirose, S. Koyama, Y. Takashima, and J. Miyakoshi. 2004. Extremely low frequency magnetic fields and the promotion of H2O2-induced cell death in HL-60 cells. International Journal of Radiation Biology 80: 317–324.PubMed
53.
go back to reference DiPietrantonio, A.M., T. Hsieh, and J.M. Wu. 1999. Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochemical and Biophysical Research Communications 255: 477–482.PubMed DiPietrantonio, A.M., T. Hsieh, and J.M. Wu. 1999. Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide. Biochemical and Biophysical Research Communications 255: 477–482.PubMed
54.
go back to reference Yamakawa, H., Y. Ito, T. Naganawa, Y. Banno, S. Nakashima, S. Yoshimura, M. Sawada, Y. Nishimura, Y. Nozawat, and N. Sakai. 2000. Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurological Research 22: 556–564.PubMed Yamakawa, H., Y. Ito, T. Naganawa, Y. Banno, S. Nakashima, S. Yoshimura, M. Sawada, Y. Nishimura, Y. Nozawat, and N. Sakai. 2000. Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurological Research 22: 556–564.PubMed
55.
go back to reference Aoshiba, K., Y. Nakajima, S. Yasui, J. Tamaoki, and A. Nagai. 1999. Red blood cells inhibit apoptosis of human neutrophils. Blood 93: 4006–4010.PubMed Aoshiba, K., Y. Nakajima, S. Yasui, J. Tamaoki, and A. Nagai. 1999. Red blood cells inhibit apoptosis of human neutrophils. Blood 93: 4006–4010.PubMed
56.
go back to reference Lizcano, A., I. Secundino, S. Dohrmann, R. Corriden, C. Rohena, S. Diaz, et al. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129: 3100–3110.PubMedPubMedCentral Lizcano, A., I. Secundino, S. Dohrmann, R. Corriden, C. Rohena, S. Diaz, et al. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129: 3100–3110.PubMedPubMedCentral
57.
go back to reference Li, L., Y.G. Zhang, and C.L. Chen. 2013. Anti-apoptotic role of peroxiredoxin III in cervical cancer cells. FEBS Open Bio 3: 51–54.PubMed Li, L., Y.G. Zhang, and C.L. Chen. 2013. Anti-apoptotic role of peroxiredoxin III in cervical cancer cells. FEBS Open Bio 3: 51–54.PubMed
58.
go back to reference Gruss-Fischer, T., and I. Fabian. 2002. Protection by ascorbic acid from denaturation and release of cytochrome c, alteration of mitochondrial membrane potential and activation of multiple caspases induced by H(2)O(2), in human leukemia cells. Biochemical Pharmacology 63: 1325–1335.PubMed Gruss-Fischer, T., and I. Fabian. 2002. Protection by ascorbic acid from denaturation and release of cytochrome c, alteration of mitochondrial membrane potential and activation of multiple caspases induced by H(2)O(2), in human leukemia cells. Biochemical Pharmacology 63: 1325–1335.PubMed
59.
go back to reference Nijs, J., F. Almond, P. De Becker, S. Truijen, and L. Paul. 2008. Can exercise limits prevent post-exertional malaise in chronic fatigue syndrome? An uncontrolled clinical trial. Clinical Rehabilitation 22: 426–435.PubMed Nijs, J., F. Almond, P. De Becker, S. Truijen, and L. Paul. 2008. Can exercise limits prevent post-exertional malaise in chronic fatigue syndrome? An uncontrolled clinical trial. Clinical Rehabilitation 22: 426–435.PubMed
60.
go back to reference Palomba, L., P. Sestili, and O. Cantoni. 1999. The antioxidant butylated hydroxytoluene induces apoptosis in human U937 cells: the role of hydrogen peroxide and altered redox state. Free Radical Research 31: 93–101.PubMed Palomba, L., P. Sestili, and O. Cantoni. 1999. The antioxidant butylated hydroxytoluene induces apoptosis in human U937 cells: the role of hydrogen peroxide and altered redox state. Free Radical Research 31: 93–101.PubMed
61.
go back to reference Jing, Y., J. Dai, R.M. Chalmers-Redman, W.G. Tatton, and S. Waxman. 1999. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94: 2102–2111.PubMed Jing, Y., J. Dai, R.M. Chalmers-Redman, W.G. Tatton, and S. Waxman. 1999. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94: 2102–2111.PubMed
62.
go back to reference Sagara, Y., R. Dargusch, D. Chambers, J. Davis, D. Schubert, and P. Maher. 1998. Cellular mechanisms of resistance to chronic oxidative stress. Free Radical Biology & Medicine 24: 1375–1389. Sagara, Y., R. Dargusch, D. Chambers, J. Davis, D. Schubert, and P. Maher. 1998. Cellular mechanisms of resistance to chronic oxidative stress. Free Radical Biology & Medicine 24: 1375–1389.
63.
go back to reference Bai, J., and A.I. Cederbaum. 2003. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. The Journal of Biological Chemistry 278: 4660–4667.PubMed Bai, J., and A.I. Cederbaum. 2003. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. The Journal of Biological Chemistry 278: 4660–4667.PubMed
64.
go back to reference Finkel, T. 2012. Signal transduction by mitochondrial oxidants. The Journal of Biological Chemistry 287: 4434–4440.PubMed Finkel, T. 2012. Signal transduction by mitochondrial oxidants. The Journal of Biological Chemistry 287: 4434–4440.PubMed
65.
go back to reference Nieborowska-Skorska, M., P.K. Kopinski, R. Ray, G. Hoser, D. Ngaba, S. Flis, K. Cramer, M.M. Reddy, M. Koptyra, T. Penserga, E. Glodkowska-Mrowka, E. Bolton, T.L. Holyoake, C.J. Eaves, S. Cerny-Reiterer, P. Valent, A. Hochhaus, T.P. Hughes, H. van der Kuip, M. Sattler, W. Wiktor-Jedrzejczak, C. Richardson, A. Dorrance, T. Stoklosa, D.A. Williams, and T. Skorski. 2012. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119: 4253–4263.PubMedPubMedCentral Nieborowska-Skorska, M., P.K. Kopinski, R. Ray, G. Hoser, D. Ngaba, S. Flis, K. Cramer, M.M. Reddy, M. Koptyra, T. Penserga, E. Glodkowska-Mrowka, E. Bolton, T.L. Holyoake, C.J. Eaves, S. Cerny-Reiterer, P. Valent, A. Hochhaus, T.P. Hughes, H. van der Kuip, M. Sattler, W. Wiktor-Jedrzejczak, C. Richardson, A. Dorrance, T. Stoklosa, D.A. Williams, and T. Skorski. 2012. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119: 4253–4263.PubMedPubMedCentral
66.
go back to reference Turrens, J.F., B.A. Freeman, J.G. Levitt, and J.D. Crapo. 1982. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Archives of Biochemistry and Biophysics 217: 401–410.PubMed Turrens, J.F., B.A. Freeman, J.G. Levitt, and J.D. Crapo. 1982. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Archives of Biochemistry and Biophysics 217: 401–410.PubMed
69.
go back to reference Sadaf, S., A.K. Singh, D. Awasthi, S. Nagarkoti, A.K. Agrahari, R.N. Srivastava, K. Jagavelu, S. Kumar, M.K. Barthwal and M. Dikshit. 2019 Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 106: 397–415. https://doi.org/10.1002/JLB.1A0918-349RR PubMed Sadaf, S., A.K. Singh, D. Awasthi, S. Nagarkoti, A.K. Agrahari, R.N. Srivastava, K. Jagavelu, S. Kumar, M.K. Barthwal and M. Dikshit. 2019 Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 106: 397–415. https://​doi.​org/​10.​1002/​JLB.​1A0918-349RR PubMed
70.
go back to reference Sakai, J., J. Li, K.K. Subramanian, S. Mondal, B. Bajrami, H. Hattori, Y. Jia, B.C. Dickinson, J. Zhong, K. Ye, C.J. Chang, Y.S. Ho, J. Zhou, and H.R. Luo. 2012. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37: 1037–1049.PubMedPubMedCentral Sakai, J., J. Li, K.K. Subramanian, S. Mondal, B. Bajrami, H. Hattori, Y. Jia, B.C. Dickinson, J. Zhong, K. Ye, C.J. Chang, Y.S. Ho, J. Zhou, and H.R. Luo. 2012. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37: 1037–1049.PubMedPubMedCentral
Metadata
Title
Catalase S-Glutathionylation by NOX2 and Mitochondrial-Derived ROS Adversely Affects Mice and Human Neutrophil Survival
Authors
Sheela Nagarkoti
Megha Dubey
Samreen Sadaf
Deepika Awasthi
Tulika Chandra
Kumaravelu Jagavelu
Sachin Kumar
Madhu Dikshit
Publication date
01-12-2019
Publisher
Springer US
Published in
Inflammation / Issue 6/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01093-z

Other articles of this Issue 6/2019

Inflammation 6/2019 Go to the issue