Skip to main content
Top
Published in: Inflammation 5/2019

01-10-2019 | Pulmonary Edema | Original Article

Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability

Authors: Xiaohong Ma, Xiangyong Liu, Jiali Feng, Dong Zhang, Lina Huang, Dongxiao Li, Liang Yin, Lan Li, Xiao-Zhi Wang

Published in: Inflammation | Issue 5/2019

Login to get access

Abstract

Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate–labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Literature
1.
go back to reference Laffey, J.G., and B.P. Kavanagh. 2017. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome. From models to patients. American Journal of Respiratory and Critical Care Medicine 196 (1): 18–28.CrossRefPubMed Laffey, J.G., and B.P. Kavanagh. 2017. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome. From models to patients. American Journal of Respiratory and Critical Care Medicine 196 (1): 18–28.CrossRefPubMed
2.
go back to reference Ferguson, N.D., E. Fan, L. Camporota, M. Antonelli, A. Anzueto, R. Beale, L. Brochard, R. Brower, A. Esteban, L. Gattinoni, A. Rhodes, A.S. Slutsky, J.L. Vincent, G.D. Rubenfeld, B.T. Thompson, and V.M. Ranieri. 2012. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine 38 (10): 1573–1582.CrossRefPubMed Ferguson, N.D., E. Fan, L. Camporota, M. Antonelli, A. Anzueto, R. Beale, L. Brochard, R. Brower, A. Esteban, L. Gattinoni, A. Rhodes, A.S. Slutsky, J.L. Vincent, G.D. Rubenfeld, B.T. Thompson, and V.M. Ranieri. 2012. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine 38 (10): 1573–1582.CrossRefPubMed
3.
go back to reference Máca, J., O. Jor, M. Holub, P. Sklienka, F. Burša, M. Burda, V. Janout, and P. Ševčík. 2017. Past and present ARDS mortality rates: a systematic review. Respiratory Care 62 (1): 113–122.CrossRefPubMed Máca, J., O. Jor, M. Holub, P. Sklienka, F. Burša, M. Burda, V. Janout, and P. Ševčík. 2017. Past and present ARDS mortality rates: a systematic review. Respiratory Care 62 (1): 113–122.CrossRefPubMed
4.
go back to reference Liu, X.Y., H.X. Xu, J.K. Li, D. Zhang, X.H. Ma, L.N. Huang, J.H. Lü, and X.Z. Wang. 2018. Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Physiology 9: 102.CrossRefPubMedPubMedCentral Liu, X.Y., H.X. Xu, J.K. Li, D. Zhang, X.H. Ma, L.N. Huang, J.H. Lü, and X.Z. Wang. 2018. Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Physiology 9: 102.CrossRefPubMedPubMedCentral
5.
go back to reference Kong, G., X. Huang, L. Wang, Y. Li, T. Sun, S. Han, W. Zhu, M. Ma, H. Xu, J. Li, X. Zhang, X. Liu, and X. Wang. 2016. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology 36: 51–58.CrossRefPubMed Kong, G., X. Huang, L. Wang, Y. Li, T. Sun, S. Han, W. Zhu, M. Ma, H. Xu, J. Li, X. Zhang, X. Liu, and X. Wang. 2016. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology 36: 51–58.CrossRefPubMed
6.
go back to reference Hsu, H.T., Y.T. Tseng, Y.Y. Hsu, K.I. Cheng, S.H. Chou, and Y.C. Lo. 2015. Propofol attenuates lipopolysaccharide-induced reactive oxygen species production through activation of Nrf2/GSH and suppression of NADPH oxidase in human alveolar epithelial cells. Inflammation 38 (1): 415–423.CrossRefPubMed Hsu, H.T., Y.T. Tseng, Y.Y. Hsu, K.I. Cheng, S.H. Chou, and Y.C. Lo. 2015. Propofol attenuates lipopolysaccharide-induced reactive oxygen species production through activation of Nrf2/GSH and suppression of NADPH oxidase in human alveolar epithelial cells. Inflammation 38 (1): 415–423.CrossRefPubMed
7.
go back to reference Lei, J., Y. Wei, P. Song, Y. Li, T. Zhang, Q. Feng, and G. Xu. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. European Journal of Pharmacology 818: 110–114.CrossRefPubMed Lei, J., Y. Wei, P. Song, Y. Li, T. Zhang, Q. Feng, and G. Xu. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. European Journal of Pharmacology 818: 110–114.CrossRefPubMed
8.
go back to reference Yang, Y., and E.P. Schmidt. 2013. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 1 (1): 23494.CrossRefPubMed Yang, Y., and E.P. Schmidt. 2013. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 1 (1): 23494.CrossRefPubMed
9.
go back to reference Inagawa, R., H. Okada, G. Takemura, K. Suzuki, C. Takada, H. Yano, Y. Ando, T. Usui, Y. Hotta, N. Miyazaki, A. Tsujimoto, R. Zaikokuji, A. Matsumoto, T. Kawaguchi, T. Doi, T. Yoshida, S. Yoshida, K. Kumada, H. Ushikoshi, I. Toyoda, and S. Ogura. 2018. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest 154 (2): 317–325.CrossRefPubMed Inagawa, R., H. Okada, G. Takemura, K. Suzuki, C. Takada, H. Yano, Y. Ando, T. Usui, Y. Hotta, N. Miyazaki, A. Tsujimoto, R. Zaikokuji, A. Matsumoto, T. Kawaguchi, T. Doi, T. Yoshida, S. Yoshida, K. Kumada, H. Ushikoshi, I. Toyoda, and S. Ogura. 2018. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest 154 (2): 317–325.CrossRefPubMed
11.
go back to reference Wang, H., B. Xiao, Z. Hao, and Z. Sun. 2016. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1017-1018: 70–74.CrossRefPubMed Wang, H., B. Xiao, Z. Hao, and Z. Sun. 2016. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1017-1018: 70–74.CrossRefPubMed
12.
go back to reference Chang, B.Y., Y.S. Jung, C.S. Yoon, J.S. Oh, J.H. Hong, Y.C. Kim, and S.Y. Kim. 2017. Fraxin prevents chemically induced hepatotoxicity by reducing oxidative stress. Molecules 22 (4): E587.CrossRefPubMed Chang, B.Y., Y.S. Jung, C.S. Yoon, J.S. Oh, J.H. Hong, Y.C. Kim, and S.Y. Kim. 2017. Fraxin prevents chemically induced hepatotoxicity by reducing oxidative stress. Molecules 22 (4): E587.CrossRefPubMed
13.
go back to reference Niu, X., F. Liu, W. Li, W. Zhi, Q. Yao, J. Zhao, G. Yang, X. Wang, L. Qin, and Z. He. 2017. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomedicine & Pharmacotherapy 95: 1091–1102.CrossRef Niu, X., F. Liu, W. Li, W. Zhi, Q. Yao, J. Zhao, G. Yang, X. Wang, L. Qin, and Z. He. 2017. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomedicine & Pharmacotherapy 95: 1091–1102.CrossRef
14.
go back to reference Whang, W.K., H.S. Park, I. Ham, M. Oh, H. Namkoong, H.K. Kim, D.W. Hwang, S.Y. Hur, T.E. Kim, Y.G. Park, J.R. Kim, and J.W. Kim. 2005. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental and Molecular Medicine 37 (5): 436–446.CrossRefPubMed Whang, W.K., H.S. Park, I. Ham, M. Oh, H. Namkoong, H.K. Kim, D.W. Hwang, S.Y. Hur, T.E. Kim, Y.G. Park, J.R. Kim, and J.W. Kim. 2005. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental and Molecular Medicine 37 (5): 436–446.CrossRefPubMed
15.
go back to reference Schempp, H., D. Weiser, and E.F. Elstner. 2000. Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula. Arzneimittel-Forschung/Drug Research 50 (4): 362–372.PubMed Schempp, H., D. Weiser, and E.F. Elstner. 2000. Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula. Arzneimittel-Forschung/Drug Research 50 (4): 362–372.PubMed
16.
go back to reference Song, L., Z. Han, H. Cheng, J. Huan, L. Chen, J. Meng, X. Chen, and L. Xie. 2018. Therapeutic effects of different doses of methylprednisolone on smoke inhalation-induced acute lung injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 30 (8): 754–759. Song, L., Z. Han, H. Cheng, J. Huan, L. Chen, J. Meng, X. Chen, and L. Xie. 2018. Therapeutic effects of different doses of methylprednisolone on smoke inhalation-induced acute lung injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 30 (8): 754–759.
17.
go back to reference Wang, L., X. Huang, G. Kong, H. Xu, J. Li, D. Hao, T. Wang, S. Han, C. Han, Y. Sun, X. Liu, and X. Wang. 2016. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS. Biochemical and Biophysical Research Communications 478 (2): 669–675.CrossRefPubMed Wang, L., X. Huang, G. Kong, H. Xu, J. Li, D. Hao, T. Wang, S. Han, C. Han, Y. Sun, X. Liu, and X. Wang. 2016. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS. Biochemical and Biophysical Research Communications 478 (2): 669–675.CrossRefPubMed
18.
go back to reference Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 789: 172–178.CrossRefPubMed Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 789: 172–178.CrossRefPubMed
19.
go back to reference Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European Journal of Pharmacology 811: 1–11.CrossRefPubMed Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European Journal of Pharmacology 811: 1–11.CrossRefPubMed
20.
go back to reference Lincoln, K.M., P. Gonzalez, T.E. Richardson, D.A. Julovich, R. Saunders, J.W. Simpkins, and K.N. Green. 2013. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chemical Communications 49 (26): 2712–2714.CrossRefPubMed Lincoln, K.M., P. Gonzalez, T.E. Richardson, D.A. Julovich, R. Saunders, J.W. Simpkins, and K.N. Green. 2013. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chemical Communications 49 (26): 2712–2714.CrossRefPubMed
21.
go back to reference Beatty, P.R., H. Puerta-Guardo, S.S. Killingbeck, D.R. Glasner, K. Hopkins, and E. Harris. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine 7 (304): 304ra141.CrossRefPubMed Beatty, P.R., H. Puerta-Guardo, S.S. Killingbeck, D.R. Glasner, K. Hopkins, and E. Harris. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine 7 (304): 304ra141.CrossRefPubMed
22.
go back to reference Aimbire, F., A.P. Ligeiro de Oliveira, R. Albertini, J.C. Corrêa, C.B. Ladeira de Campos, J.P. Lyon, J.A.Jr. Silva, and M.S. Costa. 2008. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31 (3): 189–197.CrossRefPubMed Aimbire, F., A.P. Ligeiro de Oliveira, R. Albertini, J.C. Corrêa, C.B. Ladeira de Campos, J.P. Lyon, J.A.Jr. Silva, and M.S. Costa. 2008. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31 (3): 189–197.CrossRefPubMed
23.
go back to reference Esiobu, P., and E.W. Childs. 2018. A rat model of hemorrhagic shock for studying vascular hyperpermeability. Methods in Molecular Biology 1717: 53–60.CrossRefPubMed Esiobu, P., and E.W. Childs. 2018. A rat model of hemorrhagic shock for studying vascular hyperpermeability. Methods in Molecular Biology 1717: 53–60.CrossRefPubMed
24.
go back to reference Bhargava, R., W. Janssen, C. Altmann, A. Andrés-Hernando, K. Okamura, R.W. Vandivier, N. Ahuja, and S. Faubel. 2013. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. PLoS One 8 (5): e61405.CrossRefPubMedPubMedCentral Bhargava, R., W. Janssen, C. Altmann, A. Andrés-Hernando, K. Okamura, R.W. Vandivier, N. Ahuja, and S. Faubel. 2013. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. PLoS One 8 (5): e61405.CrossRefPubMedPubMedCentral
25.
go back to reference Ju, Y.N., J. Gong, X.T. Wang, J.L. Zhu, and W. Gao. 2018. Endothelial colony-forming cells attenuate ventilator-induced lung injury in rats with acute respiratory distress syndrome. Archives of Medical Research 49 (3): 172–181.CrossRefPubMed Ju, Y.N., J. Gong, X.T. Wang, J.L. Zhu, and W. Gao. 2018. Endothelial colony-forming cells attenuate ventilator-induced lung injury in rats with acute respiratory distress syndrome. Archives of Medical Research 49 (3): 172–181.CrossRefPubMed
26.
go back to reference Peng, Z., S. Pati, D. Potter, R. Brown, J.B. Holcomb, R. Grill, K. Wataha, P.W. Park, H. Xue, and R.A. Kozar. 2013. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 40 (3): 195–202.CrossRefPubMedPubMedCentral Peng, Z., S. Pati, D. Potter, R. Brown, J.B. Holcomb, R. Grill, K. Wataha, P.W. Park, H. Xue, and R.A. Kozar. 2013. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 40 (3): 195–202.CrossRefPubMedPubMedCentral
27.
go back to reference Szatmári, T., R. Ötvös, A. Hjerpe, and K. Dobra. 2015. Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Disease Markers 2015: 796052.CrossRefPubMedPubMedCentral Szatmári, T., R. Ötvös, A. Hjerpe, and K. Dobra. 2015. Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Disease Markers 2015: 796052.CrossRefPubMedPubMedCentral
28.
go back to reference Wang, X., D. Zuo, Y. Chen, W. Li, R. Liu, Y. He, L. Ren, L. Zhou, T. Deng, X. Wang, G. Ying, and Y. Ba. 2014. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. British Journal of Cancer 111 (10): 1965–1976.CrossRefPubMedPubMedCentral Wang, X., D. Zuo, Y. Chen, W. Li, R. Liu, Y. He, L. Ren, L. Zhou, T. Deng, X. Wang, G. Ying, and Y. Ba. 2014. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. British Journal of Cancer 111 (10): 1965–1976.CrossRefPubMedPubMedCentral
29.
go back to reference Qi, D., X. Tang, J. He, D. Wang, Y. Zhao, W. Deng, X. Deng, G. Zhou, J. Xia, X. Zhong, and S. Pu. 2016. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease 7 (9): e2360.CrossRef Qi, D., X. Tang, J. He, D. Wang, Y. Zhao, W. Deng, X. Deng, G. Zhou, J. Xia, X. Zhong, and S. Pu. 2016. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease 7 (9): e2360.CrossRef
30.
go back to reference Xiao, M., T. Zhu, W. Zhang, T. Wang, Y.C. Shen, Q.F. Wan, and F.Q. Wen. 2014. Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. International Journal of Molecular Sciences 15 (11): 19355–19368.CrossRefPubMedPubMedCentral Xiao, M., T. Zhu, W. Zhang, T. Wang, Y.C. Shen, Q.F. Wan, and F.Q. Wen. 2014. Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. International Journal of Molecular Sciences 15 (11): 19355–19368.CrossRefPubMedPubMedCentral
31.
go back to reference Ma, M.M., Y. Li, X.Y. Liu, W.W. Zhu, X. Ren, G.Q. Kong, X. Huang, L.P. Wang, L.Q. Luo, and X.Z. Wang. 2015. Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38 (4): 1669–1682.CrossRefPubMed Ma, M.M., Y. Li, X.Y. Liu, W.W. Zhu, X. Ren, G.Q. Kong, X. Huang, L.P. Wang, L.Q. Luo, and X.Z. Wang. 2015. Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38 (4): 1669–1682.CrossRefPubMed
32.
go back to reference Zhou, F., Y. Zhang, J. Chen, X. Hu, and Y. Xu. 2016. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 791: 735–740.CrossRefPubMed Zhou, F., Y. Zhang, J. Chen, X. Hu, and Y. Xu. 2016. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 791: 735–740.CrossRefPubMed
33.
go back to reference Chen, L., W. Li, D. Qi, L. Lu, Z. Zhang, and D. Wang. 2018. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sciences 210: 86–95.CrossRefPubMed Chen, L., W. Li, D. Qi, L. Lu, Z. Zhang, and D. Wang. 2018. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sciences 210: 86–95.CrossRefPubMed
34.
go back to reference Chen, L., W. Li, D. Qi, and D. Wang. 2018. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radical Research 52 (4): 480–490.CrossRefPubMed Chen, L., W. Li, D. Qi, and D. Wang. 2018. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radical Research 52 (4): 480–490.CrossRefPubMed
35.
go back to reference Mammoto, A., T. Mammoto, M. Kanapathipillai, C. Wing Yung, E. Jiang, A. Jiang, K. Lofgren, E.P. Gee, and D.E. Ingber. 2013. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nature Communications 4: 1759.CrossRefPubMed Mammoto, A., T. Mammoto, M. Kanapathipillai, C. Wing Yung, E. Jiang, A. Jiang, K. Lofgren, E.P. Gee, and D.E. Ingber. 2013. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nature Communications 4: 1759.CrossRefPubMed
36.
Metadata
Title
Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability
Authors
Xiaohong Ma
Xiangyong Liu
Jiali Feng
Dong Zhang
Lina Huang
Dongxiao Li
Liang Yin
Lan Li
Xiao-Zhi Wang
Publication date
01-10-2019
Publisher
Springer US
Published in
Inflammation / Issue 5/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01052-8

Other articles of this Issue 5/2019

Inflammation 5/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.