Skip to main content
Top
Published in: Inflammation 4/2019

01-08-2019 | Osteoarthrosis | ORIGINAL ARTICLE

Formononetin Antagonizes the Interleukin-1β-Induced Catabolic Effects Through Suppressing Inflammation in Primary Rat Chondrocytes

Published in: Inflammation | Issue 4/2019

Login to get access

Abstract

In the present study, we demonstrated the anti-catabolic effects of formononetin, a phytoestrogen derived from herbal plants, against interleukin-1β (IL-1β)-induced severe catabolic effects in primary rat chondrocytes and articular cartilage. Formononetin did not affect the viability of primary rat chondrocytes in both short- (24 h) and long-term (21 days) treatment periods. Furthermore, formononetin effectively antagonized the IL-1β-induced catabolic effects including the decrease in proteoglycan content, suppression of pericellular matrix formation, and loss of proteoglycan through the decreased expression of cartilage-degrading enzymes like matrix metalloproteinase (MMP)-13, MMP-1, and MMP-3 in primary rat chondrocytes. Moreover, catabolic oxidative stress mediators like nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin E2 were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. Sequentially, the upregulation of pro-inflammatory cytokines (like IL-1α, IL-1β, IL-6, and tumor necrosis factor α), chemokines (like fractalkine, monocyte chemoattractant protein-1, and macrophage inflammatory protein-3α), and vascular endothelial growth factor were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. These data suggest that formononetin may suppress IL-1β-induced severe catabolic effects and osteoarthritic condition. Furthermore, formononetin may be a promising candidate for the treatment and prevention of osteoarthritis.
Literature
1.
go back to reference Goldring, M.B., and S.R. Goldring. 2007. Osteoarthritis. Journal of Cellular Physiology 213: 626–634.CrossRefPubMed Goldring, M.B., and S.R. Goldring. 2007. Osteoarthritis. Journal of Cellular Physiology 213: 626–634.CrossRefPubMed
2.
go back to reference Barr, A.J., T.M. Campbell, D. Hopkinson, S.R. Kingsbury, M.A. Bowes, and P.G. Conaghan. 2015. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Research & Therapy 17: 228.CrossRef Barr, A.J., T.M. Campbell, D. Hopkinson, S.R. Kingsbury, M.A. Bowes, and P.G. Conaghan. 2015. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Research & Therapy 17: 228.CrossRef
3.
go back to reference Xie, F., B. Kovic, X. Jin, X. He, M. Wang, and C. Silvestre. 2016. Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34: 1087–1100.CrossRefPubMed Xie, F., B. Kovic, X. Jin, X. He, M. Wang, and C. Silvestre. 2016. Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34: 1087–1100.CrossRefPubMed
4.
go back to reference Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.CrossRefPubMedPubMedCentral Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.CrossRefPubMedPubMedCentral
5.
go back to reference Zhang, W., H. Ouyang, C.R. Dass, and J. Xu. 2016. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research 4: 15040.CrossRefPubMedPubMedCentral Zhang, W., H. Ouyang, C.R. Dass, and J. Xu. 2016. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research 4: 15040.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Kim, H., D. Kang, Y. Cho, and J.H. Kim. 2015. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Molecules and Cells 38: 677–684.CrossRefPubMedPubMedCentral Kim, H., D. Kang, Y. Cho, and J.H. Kim. 2015. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Molecules and Cells 38: 677–684.CrossRefPubMedPubMedCentral
8.
go back to reference Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral
9.
go back to reference Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral
10.
go back to reference Nie, T., S. Zhao, L. Mao, Y. Yang, W. Sun, X. Lin, S. Liu, K. Li, Y. Sun, P. Li, Z. Zhou, S. Lin, X. Hui, A. Xu, C.W. Ma, Y. Xu, C. Wang, P.R. Dunbar, and D. Wu. 2018. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARgamma activity. British Journal of Pharmacology 175: 1439–1450.CrossRefPubMedPubMedCentral Nie, T., S. Zhao, L. Mao, Y. Yang, W. Sun, X. Lin, S. Liu, K. Li, Y. Sun, P. Li, Z. Zhou, S. Lin, X. Hui, A. Xu, C.W. Ma, Y. Xu, C. Wang, P.R. Dunbar, and D. Wu. 2018. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARgamma activity. British Journal of Pharmacology 175: 1439–1450.CrossRefPubMedPubMedCentral
11.
go back to reference Mu, H., Y.H. Bai, S.T. Wang, Z.M. Zhu, and Y.W. Zhang. 2009. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 16: 314–319.CrossRefPubMed Mu, H., Y.H. Bai, S.T. Wang, Z.M. Zhu, and Y.W. Zhang. 2009. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 16: 314–319.CrossRefPubMed
12.
go back to reference Ma, Z., W. Ji, Q. Fu, and S. Ma. 2013. Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Inflammation 36: 1560–1566.CrossRefPubMed Ma, Z., W. Ji, Q. Fu, and S. Ma. 2013. Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Inflammation 36: 1560–1566.CrossRefPubMed
13.
go back to reference Wu, J., X. Ke, N. Ma, W. Wang, W. Fu, H. Zhang, M. Zhao, X. Gao, X. Hao, and Z. Zhang. 2016. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1alpha/VEGF signaling pathway. Drug Design, Development and Therapy 10: 3071–3081.CrossRefPubMedPubMedCentral Wu, J., X. Ke, N. Ma, W. Wang, W. Fu, H. Zhang, M. Zhao, X. Gao, X. Hao, and Z. Zhang. 2016. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1alpha/VEGF signaling pathway. Drug Design, Development and Therapy 10: 3071–3081.CrossRefPubMedPubMedCentral
14.
go back to reference Xia, B., Chen Di, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral Xia, B., Chen Di, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral
15.
go back to reference Cameron, M., and S. Chrubasik. 2014. Oral herbal therapies for treating osteoarthritis. Cochrane Database of Systematic Reviews CD002947. Cameron, M., and S. Chrubasik. 2014. Oral herbal therapies for treating osteoarthritis. Cochrane Database of Systematic Reviews CD002947.
17.
go back to reference Rezuș, E., A. Cardoneanu, A. Burlui, A. Luca, C. Codreanu, B.I. Tamba, G.D. Stanciu, N. Dima, C. Bădescu, and C. Rezuș. 2019. The link between inflammaging and degenerative joint diseases. International Journal of Molecular Sciences: 20. Rezuș, E., A. Cardoneanu, A. Burlui, A. Luca, C. Codreanu, B.I. Tamba, G.D. Stanciu, N. Dima, C. Bădescu, and C. Rezuș. 2019. The link between inflammaging and degenerative joint diseases. International Journal of Molecular Sciences: 20.
18.
go back to reference Nees, T.A., N. Rosshirt, T. Reiner, M. Schiltenwolf, and B. Moradi. 2018. Inflammation and osteoarthritis-related pain. Der Schmerz. Nees, T.A., N. Rosshirt, T. Reiner, M. Schiltenwolf, and B. Moradi. 2018. Inflammation and osteoarthritis-related pain. Der Schmerz.
19.
go back to reference Mathiessen, A., and P.G. Conaghan. 2017. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Research & Therapy 19: 18.CrossRef Mathiessen, A., and P.G. Conaghan. 2017. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Research & Therapy 19: 18.CrossRef
20.
go back to reference Abramson, S.B. 2008. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy 10: S2.CrossRef Abramson, S.B. 2008. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy 10: S2.CrossRef
21.
go back to reference Notoya, K., D.V. Jovanovic, P. Reboul, J. Martel-Pelletier, F. Mineau, and J.P. Pelletier. 2000. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. Journal of Immunology 165: 3402–3410.CrossRef Notoya, K., D.V. Jovanovic, P. Reboul, J. Martel-Pelletier, F. Mineau, and J.P. Pelletier. 2000. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. Journal of Immunology 165: 3402–3410.CrossRef
22.
go back to reference Park, J.Y., M.H. Pillinger, and S.B. Abramson. 2006. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clinical Immunology 119: 229–240.CrossRefPubMed Park, J.Y., M.H. Pillinger, and S.B. Abramson. 2006. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clinical Immunology 119: 229–240.CrossRefPubMed
23.
go back to reference Schuerwegh, A.J., E.J. Dombrecht, W.J. Stevens, J.F. Van Offel, C.H. Bridts, and L.S. De Clerck. 2003. Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis and Cartilage 11: 681–687.CrossRefPubMed Schuerwegh, A.J., E.J. Dombrecht, W.J. Stevens, J.F. Van Offel, C.H. Bridts, and L.S. De Clerck. 2003. Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis and Cartilage 11: 681–687.CrossRefPubMed
24.
go back to reference Caglic, D., U. Repnik, C. Jedeszko, G. Kosec, C. Miniejew, M. Kindermann, O. Vasiljeva, et al. 2013. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry 394: 307–316.CrossRefPubMed Caglic, D., U. Repnik, C. Jedeszko, G. Kosec, C. Miniejew, M. Kindermann, O. Vasiljeva, et al. 2013. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry 394: 307–316.CrossRefPubMed
25.
go back to reference Richardson, D.W., and G.R. Dodge. 2000. Effects of interleukin-1beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes. American Journal of Veterinary Research 61: 624–630.CrossRefPubMed Richardson, D.W., and G.R. Dodge. 2000. Effects of interleukin-1beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes. American Journal of Veterinary Research 61: 624–630.CrossRefPubMed
26.
go back to reference Heraud, F., A. Heraud, and M.F. Harmand. 2000. Apoptosis in normal and osteoarthritic human articular cartilage. Annals of the Rheumatic Diseases 59: 959–965.CrossRefPubMedPubMedCentral Heraud, F., A. Heraud, and M.F. Harmand. 2000. Apoptosis in normal and osteoarthritic human articular cartilage. Annals of the Rheumatic Diseases 59: 959–965.CrossRefPubMedPubMedCentral
27.
go back to reference Mohtai, M., M.K. Gupta, B. Donlon, B. Ellison, J. Cooke, G. Gibbons, D.J. Schurman, and R.L. Smith. 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14: 67–73.CrossRefPubMed Mohtai, M., M.K. Gupta, B. Donlon, B. Ellison, J. Cooke, G. Gibbons, D.J. Schurman, and R.L. Smith. 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14: 67–73.CrossRefPubMed
28.
go back to reference Zhou, R., X. Wu, Z. Wang, J. Ge, and F. Chen. 2015. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. International Immunopharmacology 29: 748–760.CrossRefPubMed Zhou, R., X. Wu, Z. Wang, J. Ge, and F. Chen. 2015. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. International Immunopharmacology 29: 748–760.CrossRefPubMed
29.
go back to reference Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral
30.
go back to reference Zou, Y., Y. Li, L. Lu, Y. Lin, W. Liang, Z. Su, X. Wang, H. Yang, J. Wang, C. Yu, L. Huo, and Y. Ye. 2013. Correlation of fractalkine concentrations in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Annals of Clinical Biochemistry 50: 571–575.CrossRefPubMed Zou, Y., Y. Li, L. Lu, Y. Lin, W. Liang, Z. Su, X. Wang, H. Yang, J. Wang, C. Yu, L. Huo, and Y. Ye. 2013. Correlation of fractalkine concentrations in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Annals of Clinical Biochemistry 50: 571–575.CrossRefPubMed
31.
go back to reference Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): A biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): A biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed
32.
go back to reference Klosowska, K., M.V. Volin, N. Huynh, K.K. Chong, M.M. Halloran, and J.M. Woods. 2009. Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clinical & Experimental Immunology 156: 312–319.CrossRef Klosowska, K., M.V. Volin, N. Huynh, K.K. Chong, M.M. Halloran, and J.M. Woods. 2009. Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clinical & Experimental Immunology 156: 312–319.CrossRef
33.
go back to reference Wojdasiewicz, P., L.A. Poniatowski, A. Kotela, J. Deszczynski, I. Kotela, and D. Szukiewicz. 2014. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: Occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 62: 395–403.CrossRefPubMedPubMedCentral Wojdasiewicz, P., L.A. Poniatowski, A. Kotela, J. Deszczynski, I. Kotela, and D. Szukiewicz. 2014. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: Occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 62: 395–403.CrossRefPubMedPubMedCentral
34.
go back to reference Xu, Y.K., Y. Ke, B. Wang, and J.H. Lin. 2015. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biological Research 48: 64.CrossRefPubMedPubMedCentral Xu, Y.K., Y. Ke, B. Wang, and J.H. Lin. 2015. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biological Research 48: 64.CrossRefPubMedPubMedCentral
35.
go back to reference Alaaeddine, N., J. Antoniou, M. Moussa, G. Hilal, G. Kreichaty, I. Ghanem, W. Abouchedid, E. Saghbini, and J.A. Di Battista. 2015. The chemokine CCL20 induces proinflammatory and matrix degradative responses in cartilage. Inflammation Research 64: 721–731.CrossRefPubMed Alaaeddine, N., J. Antoniou, M. Moussa, G. Hilal, G. Kreichaty, I. Ghanem, W. Abouchedid, E. Saghbini, and J.A. Di Battista. 2015. The chemokine CCL20 induces proinflammatory and matrix degradative responses in cartilage. Inflammation Research 64: 721–731.CrossRefPubMed
36.
go back to reference Lingaraj, K., C.K. Poh, and W. Wang. 2010. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Annals of the Academy of Medicine, Singapore 39: 399–403.PubMed Lingaraj, K., C.K. Poh, and W. Wang. 2010. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Annals of the Academy of Medicine, Singapore 39: 399–403.PubMed
37.
go back to reference Zhang, X., R. Crawford, and Y. Xiao. 2016. Inhibition of vascular endothelial growth factor with shRNA in chondrocytes ameliorates osteoarthritis. Journal of Molecular Medicine 94: 787–798.CrossRefPubMed Zhang, X., R. Crawford, and Y. Xiao. 2016. Inhibition of vascular endothelial growth factor with shRNA in chondrocytes ameliorates osteoarthritis. Journal of Molecular Medicine 94: 787–798.CrossRefPubMed
38.
go back to reference Barranco, C. 2014. Osteoarthritis: Animal data show VEGF blocker inhibits post-traumatic OA. Nature Reviews Rheumatology 10: 638.CrossRefPubMed Barranco, C. 2014. Osteoarthritis: Animal data show VEGF blocker inhibits post-traumatic OA. Nature Reviews Rheumatology 10: 638.CrossRefPubMed
40.
go back to reference Hamilton, J.L., M. Nagao, B.R. Levine, D. Chen, B.R. Olsen, and H.J. Im. 2016. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. Journal of Bone and Mineral Research 31: 911–924.CrossRefPubMedPubMedCentral Hamilton, J.L., M. Nagao, B.R. Levine, D. Chen, B.R. Olsen, and H.J. Im. 2016. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. Journal of Bone and Mineral Research 31: 911–924.CrossRefPubMedPubMedCentral
Metadata
Title
Formononetin Antagonizes the Interleukin-1β-Induced Catabolic Effects Through Suppressing Inflammation in Primary Rat Chondrocytes
Publication date
01-08-2019
Published in
Inflammation / Issue 4/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01005-1

Other articles of this Issue 4/2019

Inflammation 4/2019 Go to the issue