Skip to main content
Top
Published in: Inflammation 3/2019

01-06-2019 | ORIGINAL ARTICLE

MSU Crystals Enhance TDB-Mediated Inflammatory Macrophage IL-1β Secretion

Authors: Kanu Wahi, Kristel Kodar, Melanie J. McConnell, Jacquie L. Harper, Mattie S. M. Timmer, Bridget L. Stocker

Published in: Inflammation | Issue 3/2019

Login to get access

Abstract

The tumour microenvironment predominantly consists of macrophages with phenotypes ranging from pro-inflammatory (M1-like) to anti-inflammatory (M2-like). Trehalose-6,6′-dibehenate (TDB) displays moderate anti-tumour activity and stimulates M1-like macrophages via the macrophage inducible C-type lectin (Mincle) resulting in IL-1β production. In this study, we examined if monosodium urate (MSU), a known vaccine adjuvant, can boost IL-1β production by TDB-stimulated macrophages. We investigated the effect of MSU/TDB co-treatment on IL-1β production by GM-CSF (M1-like) and M-CSF/IL-4 (M2-like) differentiated mouse bone marrow macrophages (BMMs) and found that MSU/TDB co-treatment of GM-CSF BMMs significantly enhanced IL-1β production in a Mincle-dependent manner. Western blot analysis showed that increased IL-1β production by GM-CSF BMMs was associated with the induction of pro-IL-1β expression by TDB rather than MSU. Flow cytometry analysis showed that MSU/TDB co-stimulation of GM-CSF BMMs led to greater expansion of CD86high/MHC IIhigh and CD86low/MHC IIlow subpopulations; however, only the latter showed increased production of IL-1β. Together, these findings provide evidence of the potential to use MSU/TDB co-treatment to boost IL-1β-mediated anti-tumour activity in M1-like tumour-associated macrophages.
Literature
1.
go back to reference Temizoz, B., E. Kuroda, and K.J. Ishii. 2016. Vaccine adjuvants as potential cancer immunotherapeutics. International Immunology 28: 329–338.PubMedPubMedCentral Temizoz, B., E. Kuroda, and K.J. Ishii. 2016. Vaccine adjuvants as potential cancer immunotherapeutics. International Immunology 28: 329–338.PubMedPubMedCentral
2.
go back to reference Bowen, W.J., K.S. Abhishek, L. Batra, H. Barsoumian, and H. Shirwan. 2018. Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines 17: 207–215.PubMedPubMedCentral Bowen, W.J., K.S. Abhishek, L. Batra, H. Barsoumian, and H. Shirwan. 2018. Current challenges for cancer vaccine adjuvant development. Expert Review of Vaccines 17: 207–215.PubMedPubMedCentral
3.
go back to reference Pasquale, A.D., S. Preiss, F.T. Da Silva, and N. Garcon. 2015. Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines 3: 320–343.PubMedPubMedCentral Pasquale, A.D., S. Preiss, F.T. Da Silva, and N. Garcon. 2015. Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines 3: 320–343.PubMedPubMedCentral
4.
go back to reference Zepp, F. 2016. Principles of vaccination. Methods in Molecular Biology 1403: 57–84.PubMed Zepp, F. 2016. Principles of vaccination. Methods in Molecular Biology 1403: 57–84.PubMed
5.
go back to reference van Ravenswaay Claasen, H.H., P.M. Kluin, and G.J. Fleuren. 1992. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Laboratory Investigation 67: 166–174.PubMed van Ravenswaay Claasen, H.H., P.M. Kluin, and G.J. Fleuren. 1992. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Laboratory Investigation 67: 166–174.PubMed
6.
go back to reference Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.PubMedPubMedCentral Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology 8: 958–969.PubMedPubMedCentral
7.
go back to reference Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology 14: 399–416.PubMedPubMedCentral Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology 14: 399–416.PubMedPubMedCentral
8.
go back to reference Buhtoiarov, I.N., P.M. Sondel, J.M. Wigginton, T.N. Buhtoiarova, E.M. Yanke, D.A. Mahvi, and A.L. Rakhmilevich. 2011. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132: 226–239.PubMedPubMedCentral Buhtoiarov, I.N., P.M. Sondel, J.M. Wigginton, T.N. Buhtoiarova, E.M. Yanke, D.A. Mahvi, and A.L. Rakhmilevich. 2011. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 132: 226–239.PubMedPubMedCentral
9.
go back to reference Shi, Y., M.A.R. Felder, P.M. Sondel, and A.L. Rakhmilevich. 2015. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Molecular Immunology 66: 208–215.PubMedPubMedCentral Shi, Y., M.A.R. Felder, P.M. Sondel, and A.L. Rakhmilevich. 2015. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Molecular Immunology 66: 208–215.PubMedPubMedCentral
10.
go back to reference Dewan, M.Z., C. Vanpouille-Box, N. Kawashima, S. DiNapoli, J.S. Babb, S.C. Formenti, S. Adams, and S. Demaria. 2012. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clinical Cancer Research 18: 6668–6678.PubMedPubMedCentral Dewan, M.Z., C. Vanpouille-Box, N. Kawashima, S. DiNapoli, J.S. Babb, S.C. Formenti, S. Adams, and S. Demaria. 2012. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clinical Cancer Research 18: 6668–6678.PubMedPubMedCentral
11.
go back to reference Hussain, S.F., L.-Y. Kong, J. Jordan, C. Conrad, T. Madden, I. Fokt, W. Priebe, and A.B. Heimberger. 2007. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Research 67: 9630–9636.PubMed Hussain, S.F., L.-Y. Kong, J. Jordan, C. Conrad, T. Madden, I. Fokt, W. Priebe, and A.B. Heimberger. 2007. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Research 67: 9630–9636.PubMed
12.
go back to reference Edwards, J.P., and L.A. Emens. 2010. The multikinase inhibitor Sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages. International Immunopharmacology 10: 1220–1228.PubMedPubMedCentral Edwards, J.P., and L.A. Emens. 2010. The multikinase inhibitor Sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages. International Immunopharmacology 10: 1220–1228.PubMedPubMedCentral
13.
go back to reference Bloch, H., and H. Noll. 1954. Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. British Journal of Experimental Pathology 36: 8–17. Bloch, H., and H. Noll. 1954. Studies on the virulence of tubercle bacilli; the effect of cord factor on murine tuberculosis. British Journal of Experimental Pathology 36: 8–17.
14.
go back to reference Ishikawa, E., T. Ishikawa, Y.S. Morita, K. Toyonaga, H. Yamada, O. Takeuchi, T. Kinoshita, S. Akira, Y. Yoshikai, and S. Yamasaki. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. The Journal of Experimental Medicine 206: 2879–2888.PubMedPubMedCentral Ishikawa, E., T. Ishikawa, Y.S. Morita, K. Toyonaga, H. Yamada, O. Takeuchi, T. Kinoshita, S. Akira, Y. Yoshikai, and S. Yamasaki. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. The Journal of Experimental Medicine 206: 2879–2888.PubMedPubMedCentral
15.
go back to reference Schoenen, H., B. Bodendorfer, K. Hitchens, S. Manzanero, K. Werninghaus, F. Nimmerjahn, E.M. Agger, S. Stenger, P. Andersen, J. Ruland, G.D. Brown, C. Wells, and R. Lang. 2010. Cutting edge: Mincle is essential for recognition and Adjuvanticity of the mycobacterial cord factor and its synthetic analog Trehalose-Dibehenate. Journal of Immunology 184: 2756–2760. Schoenen, H., B. Bodendorfer, K. Hitchens, S. Manzanero, K. Werninghaus, F. Nimmerjahn, E.M. Agger, S. Stenger, P. Andersen, J. Ruland, G.D. Brown, C. Wells, and R. Lang. 2010. Cutting edge: Mincle is essential for recognition and Adjuvanticity of the mycobacterial cord factor and its synthetic analog Trehalose-Dibehenate. Journal of Immunology 184: 2756–2760.
16.
go back to reference Braganza, C., T. Teunissen, M.S.M. Timmer, and B. Stocker. 2018. Synthetic Mincle ligands. Frontiers in Immunology 8: 1940.PubMedPubMedCentral Braganza, C., T. Teunissen, M.S.M. Timmer, and B. Stocker. 2018. Synthetic Mincle ligands. Frontiers in Immunology 8: 1940.PubMedPubMedCentral
17.
go back to reference Yarkoni, E., L. Wang, and A. Bekierkunst. 1974. Suppression of growth of Ehrlich ascites tumor cells in mice by trehalose-6,6′-dimycolate (cord factor) and BCG. Infection and Immunity 9: 977–984.PubMedPubMedCentral Yarkoni, E., L. Wang, and A. Bekierkunst. 1974. Suppression of growth of Ehrlich ascites tumor cells in mice by trehalose-6,6′-dimycolate (cord factor) and BCG. Infection and Immunity 9: 977–984.PubMedPubMedCentral
18.
go back to reference Yarkoni, E., E. Lederer, and H.J. Rapp. 1981. Immunotherapy of experimental cancer with a mixture of synthetic muramyl dipeptide and trehalose dimycolate. Infection and Immunity 32: 273–276.PubMedPubMedCentral Yarkoni, E., E. Lederer, and H.J. Rapp. 1981. Immunotherapy of experimental cancer with a mixture of synthetic muramyl dipeptide and trehalose dimycolate. Infection and Immunity 32: 273–276.PubMedPubMedCentral
19.
go back to reference Watanabe, R., Y.C. Yoo, K. Hata, M. Mitobe, Y. Koike, M. Nishizawa, D.M. Garcia, Y. Nobuchi, H. Imagawa, H. Yamada, and I. Azuma. 1999. Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17: 1484–1492.PubMed Watanabe, R., Y.C. Yoo, K. Hata, M. Mitobe, Y. Koike, M. Nishizawa, D.M. Garcia, Y. Nobuchi, H. Imagawa, H. Yamada, and I. Azuma. 1999. Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17: 1484–1492.PubMed
20.
go back to reference Yamamoto, H., M. Oda, M. Nakano, N. Watanabe, K. Yabiku, M. Shibutani, M. Inoue, H. Imagawa, M. Nagahama, S. Himeno, K. Setsu, J. Sakurai, and M. Nishizawa. 2013. Development of Vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6′-dicorynomycolate. Journal of Medicinal Chemistry 56: 381–385.PubMed Yamamoto, H., M. Oda, M. Nakano, N. Watanabe, K. Yabiku, M. Shibutani, M. Inoue, H. Imagawa, M. Nagahama, S. Himeno, K. Setsu, J. Sakurai, and M. Nishizawa. 2013. Development of Vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6′-dicorynomycolate. Journal of Medicinal Chemistry 56: 381–385.PubMed
21.
go back to reference Pimm, M.V., R.W. Baldwin, J. Polonsky, and E. Lederer. 1979. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose-6,6′-dimycolate) and synthetic analogues. International Journal of Cancer 24: 780–785.PubMed Pimm, M.V., R.W. Baldwin, J. Polonsky, and E. Lederer. 1979. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose-6,6′-dimycolate) and synthetic analogues. International Journal of Cancer 24: 780–785.PubMed
22.
go back to reference Nishikawa, Y., T. Katori, K. Kukita, and T. Ikekawa. 1982. Synthesis and anti-tumour effects of 6,6′-di-O-acyl-α,α'-trehaloses. Nippon Kagaku Kaishi 10: 1661–1666. Nishikawa, Y., T. Katori, K. Kukita, and T. Ikekawa. 1982. Synthesis and anti-tumour effects of 6,6′-di-O-acyl-α,α'-trehaloses. Nippon Kagaku Kaishi 10: 1661–1666.
23.
go back to reference Kodar, K., J.L. Harper, M.J. McConnell, M.S.M. Timmer, and B.L. Stocker. 2017. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immunity, Inflammation and Disease 5: 503–514.PubMedPubMedCentral Kodar, K., J.L. Harper, M.J. McConnell, M.S.M. Timmer, and B.L. Stocker. 2017. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. Immunity, Inflammation and Disease 5: 503–514.PubMedPubMedCentral
24.
go back to reference Werninghaus, K., A. Babiak, O. Groß, C. Hölscher, H. Dietrich, E.M. Agger, J. Mages, A. Mocsai, H. Schoenen, K. Finger, F. Nimmerjahn, G.D. Brown, C. Kirschning, A. Heit, P. Andersen, H. Wagner, J. Ruland, and R. Lang. 2009. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. The Journal of Experimental Medicine 206: 89–97.PubMedPubMedCentral Werninghaus, K., A. Babiak, O. Groß, C. Hölscher, H. Dietrich, E.M. Agger, J. Mages, A. Mocsai, H. Schoenen, K. Finger, F. Nimmerjahn, G.D. Brown, C. Kirschning, A. Heit, P. Andersen, H. Wagner, J. Ruland, and R. Lang. 2009. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. The Journal of Experimental Medicine 206: 89–97.PubMedPubMedCentral
25.
go back to reference Schweneker, K., O. Gorka, M. Schweneker, H. Poeck, J. Tschopp, C. Peschel, J. Ruland, and O. Groß. 2013. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218: 664–673.PubMed Schweneker, K., O. Gorka, M. Schweneker, H. Poeck, J. Tschopp, C. Peschel, J. Ruland, and O. Groß. 2013. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 218: 664–673.PubMed
26.
go back to reference Giamarellos-Bourboulis, E.J., M. Mouktaroudi, E. Bodar, J. Van Der Ven, B.J. Kullberg, M.G. Netea, et al. 2009. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 βby mononuclear cells through a caspase 1-mediated process. Annals of the Rheumatic Diseases 68: 273–278.PubMed Giamarellos-Bourboulis, E.J., M. Mouktaroudi, E. Bodar, J. Van Der Ven, B.J. Kullberg, M.G. Netea, et al. 2009. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 βby mononuclear cells through a caspase 1-mediated process. Annals of the Rheumatic Diseases 68: 273–278.PubMed
27.
go back to reference Chen, C.J., Y. Shi, A. Hearn, K. Fitzgerald, D. Golenbock, G. Reed, S. Akira, and K.L. Rock. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. The Journal of Clinical Investigation 116: 2262–2271.PubMedPubMedCentral Chen, C.J., Y. Shi, A. Hearn, K. Fitzgerald, D. Golenbock, G. Reed, S. Akira, and K.L. Rock. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. The Journal of Clinical Investigation 116: 2262–2271.PubMedPubMedCentral
28.
go back to reference Taus, F., M.B. Santucci, E. Greco, M. Morandi, I. Palucci, S. Mariotti, et al. 2015. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One 10: 1–16. Taus, F., M.B. Santucci, E. Greco, M. Morandi, I. Palucci, S. Mariotti, et al. 2015. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One 10: 1–16.
29.
go back to reference Kuhn, S., E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, and F. Ronchese. 2013. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. Journal of Immunology 191: 1984–1992. Kuhn, S., E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, and F. Ronchese. 2013. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. Journal of Immunology 191: 1984–1992.
30.
go back to reference Shi, Y., J.E. Evans, and K.L. Rock. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.PubMed Shi, Y., J.E. Evans, and K.L. Rock. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.PubMed
31.
go back to reference Hu, D.-E., A.M. Moore, L.L. Thomsen, and K.M. Brindle. 2004. Uric acid promotes tumor immune rejection. Cancer Research 64: 5059–5062.PubMed Hu, D.-E., A.M. Moore, L.L. Thomsen, and K.M. Brindle. 2004. Uric acid promotes tumor immune rejection. Cancer Research 64: 5059–5062.PubMed
32.
go back to reference Dziaman, T., Z. Banaszkiewicz, K. Roszkowski, D. Gackowski, E. Wisniewska, R. Rozalski, M. Foksinski, A. Siomek, E. Speina, A. Winczura, A. Marszalek, B. Tudek, and R. Olinski. 2014. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. International Journal of Cancer 134: 376–383.PubMed Dziaman, T., Z. Banaszkiewicz, K. Roszkowski, D. Gackowski, E. Wisniewska, R. Rozalski, M. Foksinski, A. Siomek, E. Speina, A. Winczura, A. Marszalek, B. Tudek, and R. Olinski. 2014. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. International Journal of Cancer 134: 376–383.PubMed
34.
go back to reference Fleetwood, A.J., T. Lawrence, J.A. Hamilton, and A.D. Cook. 2007. Granulocyte-macrophage Colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation. Journal of Immunology 178: 5245–5252. Fleetwood, A.J., T. Lawrence, J.A. Hamilton, and A.D. Cook. 2007. Granulocyte-macrophage Colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation. Journal of Immunology 178: 5245–5252.
35.
go back to reference Hamilton, T.A., C. Zhao, P.G. Pavicic, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6. Hamilton, T.A., C. Zhao, P.G. Pavicic, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6.
36.
go back to reference Khan, A.A., S.H. Chee, R.J. McLaughlin, J.L. Harper, F. Kamena, M.S. Timmer, and B.L. Stocker. 2011. Long-chain lipids are required for the innate immune recognition of trehalose diesters by macrophages. Chembiochem 12: 2572–2576.PubMed Khan, A.A., S.H. Chee, R.J. McLaughlin, J.L. Harper, F. Kamena, M.S. Timmer, and B.L. Stocker. 2011. Long-chain lipids are required for the innate immune recognition of trehalose diesters by macrophages. Chembiochem 12: 2572–2576.PubMed
37.
go back to reference Martin, W.J., M. Walton, and J.L. Harper. 2009. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis and Rheumatism 60: 281–289.PubMed Martin, W.J., M. Walton, and J.L. Harper. 2009. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis and Rheumatism 60: 281–289.PubMed
38.
go back to reference Haabeth, O.A.W., K.B. Lorvik, H. Yagita, B. Bogen, and A. Corthay. 2016. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology 5: e1039763.PubMed Haabeth, O.A.W., K.B. Lorvik, H. Yagita, B. Bogen, and A. Corthay. 2016. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells. Oncoimmunology 5: e1039763.PubMed
39.
go back to reference He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 Inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentral He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 Inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentral
40.
go back to reference Helft, J., J. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari, B.U. Schraml, D. Goubau, and C. Reise Sousa. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42: 1197–1211.PubMed Helft, J., J. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari, B.U. Schraml, D. Goubau, and C. Reise Sousa. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42: 1197–1211.PubMed
41.
go back to reference Na, Y.R., D. Jung, G.J. Gu, and S.H. Seok. 2016. GM-CSF grown bone marrow derived cells are composed of phenotypically different dendritic cells and macrophages. Molecules and Cells 39: 734–741.PubMedPubMedCentral Na, Y.R., D. Jung, G.J. Gu, and S.H. Seok. 2016. GM-CSF grown bone marrow derived cells are composed of phenotypically different dendritic cells and macrophages. Molecules and Cells 39: 734–741.PubMedPubMedCentral
42.
go back to reference Guermonprez, P., J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena. 2002. Antigen presentaion and T cell stimulation by dendritic cells. Annual Review of Immunology 20: 621–667.PubMed Guermonprez, P., J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena. 2002. Antigen presentaion and T cell stimulation by dendritic cells. Annual Review of Immunology 20: 621–667.PubMed
43.
go back to reference Wang, C., X. Yu, Q. Cao, Y. Wang, G. Zheng, T.K. Tan, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology 14: 1–10.PubMedPubMedCentral Wang, C., X. Yu, Q. Cao, Y. Wang, G. Zheng, T.K. Tan, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunology 14: 1–10.PubMedPubMedCentral
Metadata
Title
MSU Crystals Enhance TDB-Mediated Inflammatory Macrophage IL-1β Secretion
Authors
Kanu Wahi
Kristel Kodar
Melanie J. McConnell
Jacquie L. Harper
Mattie S. M. Timmer
Bridget L. Stocker
Publication date
01-06-2019
Publisher
Springer US
Published in
Inflammation / Issue 3/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00976-5

Other articles of this Issue 3/2019

Inflammation 3/2019 Go to the issue