Skip to main content
Top
Published in: Inflammation 5/2018

01-10-2018 | ORIGINAL ARTICLE

p38 Inhibition Ameliorates Inspiratory Resistive Breathing-Induced Pulmonary Inflammation

Authors: Dimitrios Toumpanakis, Vyronia Vassilakopoulou, Eleftheria Mizi, Athanasia Chatzianastasiou, Konstantinos Loverdos, Ioanna Vraila, Fotis Perlikos, Dionysios Tsoukalas, Charoula-Eleni Giannakopoulou, Adamantia Sotiriou, Maria Dettoraki, Vassiliki Karavana, Theodoros Vassilakopoulos

Published in: Inflammation | Issue 5/2018

Login to get access

Abstract

Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with strenuous contractions of the inspiratory muscles and increased negative intrathoracic pressures that act as an injurious stimulus to the lung. We have shown that IRB induces pulmonary inflammation in healthy animals. p38 kinase is activated in the lung under stress. We hypothesized that p38 is activated during IRB and contributes to IRB-induced pulmonary inflammation. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve. Resistance was connected to the inspiratory port to provoke a peak tidal inspiratory pressure 50% of maximum. Following 3 and 6 h of IRB, respiratory system mechanics were measured and bronchoalveolar lavage (BAL) was performed. Phosphorylated p38, TNF-α, and MIP-2α were detected in lung tissue. Lung injury was estimated histologically. SB203580 (p38 inhibitor) was administered prior to IRB (1 mg kg−1). Six hours of IRB increased phosphorylated p38 in the lung, compared with quietly breathing controls (p = 0.001). Six hours of IRB increased the numbers of macrophages and neutrophils (p = 0.01 and p = 0.005) in BAL fluid. BAL protein levels and lung elasticity increased after both 3 and 6 h IRB. TNF-α and MIP-2α increased after 6 h of IRB (p = 0.01 and p < 0.001, respectively). Increased lung injury score was detected at 6 h IRB. SB203580 administration blocked the increase of neutrophils and macrophages at 6 h IRB (p = 0.01 and p = 0.005 to 6 h IRB) but not the increase in BAL protein and elasticity. TNF-α, MIP-2α, and injury score at 6 h IRB returned to control. p38 activation contributes to IRB-induced pulmonary inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hillas, G., F. Perlikos, and N. Tzanakis. 2016. Acute exacerbation of COPD: Is it the “stroke of the lungs”? International Journal of Chronic Obstructive Pulmonary Disease 11: 1579–1586.CrossRefPubMedPubMedCentral Hillas, G., F. Perlikos, and N. Tzanakis. 2016. Acute exacerbation of COPD: Is it the “stroke of the lungs”? International Journal of Chronic Obstructive Pulmonary Disease 11: 1579–1586.CrossRefPubMedPubMedCentral
2.
go back to reference Wedzicha, J.A. 2015. Mechanisms of chronic obstructive pulmonary disease exacerbations. Annals of the American Thoracic Society 12 (Suppl 2): S157–S159.CrossRefPubMed Wedzicha, J.A. 2015. Mechanisms of chronic obstructive pulmonary disease exacerbations. Annals of the American Thoracic Society 12 (Suppl 2): S157–S159.CrossRefPubMed
3.
go back to reference Vassilakopoulos, T., and D. Toumpanakis. 2016. Can resistive breathing injure the lung? Implications for COPD exacerbations. International Journal of Chronic Obstructive Pulmonary Disease 11: 2377–2384.CrossRefPubMedPubMedCentral Vassilakopoulos, T., and D. Toumpanakis. 2016. Can resistive breathing injure the lung? Implications for COPD exacerbations. International Journal of Chronic Obstructive Pulmonary Disease 11: 2377–2384.CrossRefPubMedPubMedCentral
4.
go back to reference Glynos, C., D. Toumpanakis, K. Loverdos, V. Karavana, Z. Zhou, C. Magkou, M. Dettoraki, F. Perlikos, A. Pavlidou, V. Kotsikoris, S. Topouzis, S.E. Theocharis, P. Brouckaert, A. Giannis, A. Papapetropoulos, and T. Vassilakopoulos. 2015. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation. American Journal of Respiratory Cell and Molecular Biology 52 (6): 762–771.CrossRefPubMed Glynos, C., D. Toumpanakis, K. Loverdos, V. Karavana, Z. Zhou, C. Magkou, M. Dettoraki, F. Perlikos, A. Pavlidou, V. Kotsikoris, S. Topouzis, S.E. Theocharis, P. Brouckaert, A. Giannis, A. Papapetropoulos, and T. Vassilakopoulos. 2015. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation. American Journal of Respiratory Cell and Molecular Biology 52 (6): 762–771.CrossRefPubMed
5.
go back to reference Loverdos, K., D. Toumpanakis, E. Litsiou, V. Karavana, C. Glynos, C. Magkou, S. Theocharis, and T. Vassilakopoulos. 2016. The differential effects of inspiratory, expiratory, and combined resistive breathing on healthy lung. International Journal of Chronic Obstructive Pulmonary Disease 11: 1623–1638.CrossRefPubMedPubMedCentral Loverdos, K., D. Toumpanakis, E. Litsiou, V. Karavana, C. Glynos, C. Magkou, S. Theocharis, and T. Vassilakopoulos. 2016. The differential effects of inspiratory, expiratory, and combined resistive breathing on healthy lung. International Journal of Chronic Obstructive Pulmonary Disease 11: 1623–1638.CrossRefPubMedPubMedCentral
6.
go back to reference Toumpanakis, D., G.A. Kastis, P. Zacharatos, I. Sigala, T. Michailidou, M. Kouvela, C. Glynos, M. Divangahi, C. Roussos, S.E. Theocharis, and T. Vassilakopoulos. 2010. Inspiratory resistive breathing induces acute lung injury. American Journal of Respiratory and Critical Care Medicine 182 (9): 1129–1136.CrossRefPubMed Toumpanakis, D., G.A. Kastis, P. Zacharatos, I. Sigala, T. Michailidou, M. Kouvela, C. Glynos, M. Divangahi, C. Roussos, S.E. Theocharis, and T. Vassilakopoulos. 2010. Inspiratory resistive breathing induces acute lung injury. American Journal of Respiratory and Critical Care Medicine 182 (9): 1129–1136.CrossRefPubMed
7.
go back to reference Toumpanakis, D., O. Noussia, I. Sigala, E. Litsiou, K. Loverdos, P. Zacharatos, V. Karavana, et al. 2015. Inspiratory resistive breathing induces MMP-9 and MMP-12 expression in the lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (7): L683–L692.CrossRefPubMed Toumpanakis, D., O. Noussia, I. Sigala, E. Litsiou, K. Loverdos, P. Zacharatos, V. Karavana, et al. 2015. Inspiratory resistive breathing induces MMP-9 and MMP-12 expression in the lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (7): L683–L692.CrossRefPubMed
8.
go back to reference Saccani, S., S. Pantano, and G. Natoli. 2002. p38-dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nature Immunology 3 (1): 69–75.CrossRefPubMed Saccani, S., S. Pantano, and G. Natoli. 2002. p38-dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nature Immunology 3 (1): 69–75.CrossRefPubMed
9.
go back to reference Chopra, P., V. Kanoje, A. Semwal, and A. Ray. 2008. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opinion on Investigational Drugs 17 (10): 1411–1425.CrossRefPubMed Chopra, P., V. Kanoje, A. Semwal, and A. Ray. 2008. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opinion on Investigational Drugs 17 (10): 1411–1425.CrossRefPubMed
10.
go back to reference Iwaki, M., S. Ito, M. Morioka, S. Iwata, Y. Numaguchi, M. Ishii, M. Kondo, et al. 2009. Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells. Biochemical and Biophysical Research Communications 389 (3): 531–536.CrossRefPubMed Iwaki, M., S. Ito, M. Morioka, S. Iwata, Y. Numaguchi, M. Ishii, M. Kondo, et al. 2009. Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells. Biochemical and Biophysical Research Communications 389 (3): 531–536.CrossRefPubMed
11.
go back to reference Abdulnour, R.E., X. Peng, J.H. Finigan, E.J. Han, E.J. Hasan, K.G. Birukov, S.P. Reddy, et al. 2006. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (3): L345–L353.CrossRefPubMed Abdulnour, R.E., X. Peng, J.H. Finigan, E.J. Han, E.J. Hasan, K.G. Birukov, S.P. Reddy, et al. 2006. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (3): L345–L353.CrossRefPubMed
12.
go back to reference Oudin, S., and J. Pugin. 2002. Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. American Journal of Respiratory Cell and Molecular Biology 27 (1): 107–114.CrossRefPubMed Oudin, S., and J. Pugin. 2002. Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. American Journal of Respiratory Cell and Molecular Biology 27 (1): 107–114.CrossRefPubMed
13.
go back to reference Damarla, M., E. Hasan, A. Boueiz, A. Le, H.H. Pae, C. Montouchet, T. Kolb, et al. 2009. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. PLoS ONE 4 (2): e4600.CrossRefPubMedPubMedCentral Damarla, M., E. Hasan, A. Boueiz, A. Le, H.H. Pae, C. Montouchet, T. Kolb, et al. 2009. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. PLoS ONE 4 (2): e4600.CrossRefPubMedPubMedCentral
14.
go back to reference Liu, S., G. Feng, G.L. Wang, and G.J. Liu. 2008. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. European Journal of Pharmacology 584 (1): 159–165.CrossRefPubMed Liu, S., G. Feng, G.L. Wang, and G.J. Liu. 2008. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. European Journal of Pharmacology 584 (1): 159–165.CrossRefPubMed
15.
go back to reference Schnyder-Candrian, S., V.F. Quesniaux, F. Di Padova, I. Maillet, N. Noulin, I. Couillin, R. Moser, et al. 2005. Dual effects of p38 MAPK on TNF-dependent bronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acute respiratory distress syndrome. Journal of Immunology 175 (1): 262–269.CrossRef Schnyder-Candrian, S., V.F. Quesniaux, F. Di Padova, I. Maillet, N. Noulin, I. Couillin, R. Moser, et al. 2005. Dual effects of p38 MAPK on TNF-dependent bronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acute respiratory distress syndrome. Journal of Immunology 175 (1): 262–269.CrossRef
16.
go back to reference Medicherla, S., M.F. Fitzgerald, D. Spicer, P. Woodman, J.Y. Ma, A.M. Kapoun, S. Chakravarty, S. Dugar, A.A. Protter, and L.S. Higgins. 2008. p38alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. The Journal of Pharmacology and Experimental Therapeutics 324 (3): 921–929.CrossRefPubMed Medicherla, S., M.F. Fitzgerald, D. Spicer, P. Woodman, J.Y. Ma, A.M. Kapoun, S. Chakravarty, S. Dugar, A.A. Protter, and L.S. Higgins. 2008. p38alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. The Journal of Pharmacology and Experimental Therapeutics 324 (3): 921–929.CrossRefPubMed
17.
go back to reference Nath, P., S.Y. Leung, A. Williams, A. Noble, S.D. Chakravarty, G.R. Luedtke, S. Medicherla, L.S. Higgins, A. Protter, and K.F. Chung. 2006. Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. European Journal of Pharmacology 544 (1–3): 160–167.CrossRefPubMed Nath, P., S.Y. Leung, A. Williams, A. Noble, S.D. Chakravarty, G.R. Luedtke, S. Medicherla, L.S. Higgins, A. Protter, and K.F. Chung. 2006. Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. European Journal of Pharmacology 544 (1–3): 160–167.CrossRefPubMed
18.
go back to reference Renda, T., S. Baraldo, G. Pelaia, E. Bazzan, G. Turato, A. Papi, P. Maestrelli, et al. 2008. Increased activation of p38 MAPK in COPD. The European Respiratory Journal 31 (1): 62–69.CrossRefPubMed Renda, T., S. Baraldo, G. Pelaia, E. Bazzan, G. Turato, A. Papi, P. Maestrelli, et al. 2008. Increased activation of p38 MAPK in COPD. The European Respiratory Journal 31 (1): 62–69.CrossRefPubMed
19.
go back to reference Vassilakopoulos, T., M. Divangahi, G. Rallis, O. Kishta, B. Petrof, A. Comtois, and S.N. Hussain. 2004. Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing. American Journal of Respiratory and Critical Care Medicine 170 (2): 154–161.CrossRefPubMed Vassilakopoulos, T., M. Divangahi, G. Rallis, O. Kishta, B. Petrof, A. Comtois, and S.N. Hussain. 2004. Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing. American Journal of Respiratory and Critical Care Medicine 170 (2): 154–161.CrossRefPubMed
20.
go back to reference Sigala, I., P. Zacharatos, S. Boulia, D. Toumpanakis, T. Michailidou, D. Parthenis, C. Roussos, A. Papapetropoulos, S.N. Hussain, and T. Vassilakopoulos. 2012. Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing. Journal of Applied Physiology (1985. ) 113 (10): 1594–1603.CrossRef Sigala, I., P. Zacharatos, S. Boulia, D. Toumpanakis, T. Michailidou, D. Parthenis, C. Roussos, A. Papapetropoulos, S.N. Hussain, and T. Vassilakopoulos. 2012. Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing. Journal of Applied Physiology (1985. ) 113 (10): 1594–1603.CrossRef
21.
go back to reference Davies, S.P., H. Reddy, M. Caivano, and P. Cohen. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. The Biochemical Journal 351 (Pt 1): 95–105.CrossRefPubMedPubMedCentral Davies, S.P., H. Reddy, M. Caivano, and P. Cohen. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. The Biochemical Journal 351 (Pt 1): 95–105.CrossRefPubMedPubMedCentral
22.
go back to reference Hashimoto, S., Y. Gon, K. Matsumoto, S. Maruoka, I. Takeshita, S. Hayashi, Y. Asai, I. Jibiki, T. Machino, and T. Horie. 2000. Selective inhibitor of p38 mitogen-activated protein kinase inhibits lipopolysaccharide-induced interleukin-8 expression in human pulmonary vascular endothelial cells. The Journal of Pharmacology and Experimental Therapeutics 293 (2): 370–375.PubMed Hashimoto, S., Y. Gon, K. Matsumoto, S. Maruoka, I. Takeshita, S. Hayashi, Y. Asai, I. Jibiki, T. Machino, and T. Horie. 2000. Selective inhibitor of p38 mitogen-activated protein kinase inhibits lipopolysaccharide-induced interleukin-8 expression in human pulmonary vascular endothelial cells. The Journal of Pharmacology and Experimental Therapeutics 293 (2): 370–375.PubMed
23.
go back to reference Kim, H.J., H.S. Lee, Y.H. Chong, and J.L. Kang. 2006. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225 (1): 36–47.CrossRefPubMed Kim, H.J., H.S. Lee, Y.H. Chong, and J.L. Kang. 2006. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225 (1): 36–47.CrossRefPubMed
24.
go back to reference Sigala, I., P. Zacharatos, D. Toumpanakis, T. Michailidou, O. Noussia, S. Theocharis, C. Roussos, A. Papapetropoulos, and T. Vassilakopoulos. 2011. MAPKs and NF-kappaB differentially regulate cytokine expression in the diaphragm in response to resistive breathing: The role of oxidative stress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 300 (5): R1152–R1162.CrossRefPubMed Sigala, I., P. Zacharatos, D. Toumpanakis, T. Michailidou, O. Noussia, S. Theocharis, C. Roussos, A. Papapetropoulos, and T. Vassilakopoulos. 2011. MAPKs and NF-kappaB differentially regulate cytokine expression in the diaphragm in response to resistive breathing: The role of oxidative stress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 300 (5): R1152–R1162.CrossRefPubMed
25.
go back to reference Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J.J. Fredberg. 1992. Input impedance and peripheral inhomogeneity of dog lungs. Journal of Applied Physiology (1985) 72 (1): 168–178.CrossRef Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J.J. Fredberg. 1992. Input impedance and peripheral inhomogeneity of dog lungs. Journal of Applied Physiology (1985) 72 (1): 168–178.CrossRef
26.
go back to reference Kastis, G.A., D. Toumpanakis, K. Loverdos, A. Anaplioti, A. Samartzis, P. Argyriou, G. Loudos, et al. 2013. Dose- and time-dependent effects of lipopolysaccharide on technetium-99-m-labeled diethylene-triamine pentaacetatic acid clearance, respiratory system mechanics and pulmonary inflammation. Experimental Biology and Medicine (Maywood, N.J.) 238 (2): 209–222.CrossRef Kastis, G.A., D. Toumpanakis, K. Loverdos, A. Anaplioti, A. Samartzis, P. Argyriou, G. Loudos, et al. 2013. Dose- and time-dependent effects of lipopolysaccharide on technetium-99-m-labeled diethylene-triamine pentaacetatic acid clearance, respiratory system mechanics and pulmonary inflammation. Experimental Biology and Medicine (Maywood, N.J.) 238 (2): 209–222.CrossRef
27.
go back to reference Toumpanakis, D., V. Vassilakopoulou, I. Sigala, P. Zacharatos, I. Vraila, V. Karavana, S. Theocharis, and T. Vassilakopoulos. 2017. The role of Src & ERK1/2 kinases in inspiratory resistive breathing induced acute lung injury and inflammation. Respiratory Research 18 (1): 209.CrossRefPubMedPubMedCentral Toumpanakis, D., V. Vassilakopoulou, I. Sigala, P. Zacharatos, I. Vraila, V. Karavana, S. Theocharis, and T. Vassilakopoulos. 2017. The role of Src & ERK1/2 kinases in inspiratory resistive breathing induced acute lung injury and inflammation. Respiratory Research 18 (1): 209.CrossRefPubMedPubMedCentral
28.
go back to reference Kumar, A., S. Lnu, R. Malya, D. Barron, J. Moore, D.B. Corry, and A.M. Boriek. 2003. Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: Implications in asthma. The FASEB Journal 17 (13): 1800–1811.CrossRefPubMed Kumar, A., S. Lnu, R. Malya, D. Barron, J. Moore, D.B. Corry, and A.M. Boriek. 2003. Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: Implications in asthma. The FASEB Journal 17 (13): 1800–1811.CrossRefPubMed
29.
go back to reference Quinn, D., A. Tager, P.M. Joseph, J.V. Bonventre, T. Force, and C.A. Hales. 1999. Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells. Chest 116 (1 Suppl): 89S–90S.CrossRefPubMed Quinn, D., A. Tager, P.M. Joseph, J.V. Bonventre, T. Force, and C.A. Hales. 1999. Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells. Chest 116 (1 Suppl): 89S–90S.CrossRefPubMed
30.
go back to reference Sawada, Y., K. Nakamura, K. Doi, K. Takeda, K. Tobiume, M. Saitoh, K. Morita, et al. 2001. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. Journal of Cell Science 114 (Pt 6): 1221–1227.PubMed Sawada, Y., K. Nakamura, K. Doi, K. Takeda, K. Tobiume, M. Saitoh, K. Morita, et al. 2001. Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. Journal of Cell Science 114 (Pt 6): 1221–1227.PubMed
31.
go back to reference Wu, J., S.R. Thabet, A. Kirabo, D.W. Trott, M.A. Saleh, L. Xiao, M.S. Madhur, W. Chen, and D.G. Harrison. 2014. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circulation Research 114 (4): 616–625.CrossRefPubMed Wu, J., S.R. Thabet, A. Kirabo, D.W. Trott, M.A. Saleh, L. Xiao, M.S. Madhur, W. Chen, and D.G. Harrison. 2014. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circulation Research 114 (4): 616–625.CrossRefPubMed
32.
go back to reference Nick, J.A., S.K. Young, K.K. Brown, N.J. Avdi, P.G. Arndt, B.T. Suratt, M.S. Janes, P.M. Henson, and G.S. Worthen. 2000. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. Journal of Immunology 164 (4): 2151–2159.CrossRef Nick, J.A., S.K. Young, K.K. Brown, N.J. Avdi, P.G. Arndt, B.T. Suratt, M.S. Janes, P.M. Henson, and G.S. Worthen. 2000. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. Journal of Immunology 164 (4): 2151–2159.CrossRef
33.
go back to reference Zhang, S., M. Rahman, S. Zhang, Y. Wang, H. Herwald, B. Jeppsson, and H. Thorlacius. 2012. p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury. Journal of Leukocyte Biology 91 (1): 137–145.CrossRefPubMed Zhang, S., M. Rahman, S. Zhang, Y. Wang, H. Herwald, B. Jeppsson, and H. Thorlacius. 2012. p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury. Journal of Leukocyte Biology 91 (1): 137–145.CrossRefPubMed
34.
go back to reference Dolinay, T., W. Wu, N. Kaminski, E. Ifedigbo, A.M. Kaynar, M. Szilasi, S.C. Watkins, S.W. Ryter, A. Hoetzel, and A.M. Choi. 2008. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury. PLoS ONE 3 (2): e1601.CrossRefPubMedPubMedCentral Dolinay, T., W. Wu, N. Kaminski, E. Ifedigbo, A.M. Kaynar, M. Szilasi, S.C. Watkins, S.W. Ryter, A. Hoetzel, and A.M. Choi. 2008. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury. PLoS ONE 3 (2): e1601.CrossRefPubMedPubMedCentral
36.
go back to reference Matsumoto, K., S. Hashimoto, Y. Gon, T. Nakayama, and T. Horie. 1998. Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. The Journal of Allergy and Clinical Immunology 101 (6 Pt 1): 825–831.CrossRefPubMed Matsumoto, K., S. Hashimoto, Y. Gon, T. Nakayama, and T. Horie. 1998. Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. The Journal of Allergy and Clinical Immunology 101 (6 Pt 1): 825–831.CrossRefPubMed
37.
go back to reference Smith, S.J., P.S. Fenwick, A.G. Nicholson, F. Kirschenbaum, T.K. Finney-Hayward, L.S. Higgins, M.A. Giembycz, P.J. Barnes, and L.E. Donnelly. 2006. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. British Journal of Pharmacology 149 (4): 393–404.CrossRefPubMedPubMedCentral Smith, S.J., P.S. Fenwick, A.G. Nicholson, F. Kirschenbaum, T.K. Finney-Hayward, L.S. Higgins, M.A. Giembycz, P.J. Barnes, and L.E. Donnelly. 2006. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. British Journal of Pharmacology 149 (4): 393–404.CrossRefPubMedPubMedCentral
38.
go back to reference Underwood, D.C., R.R. Osborn, S. Bochnowicz, E.F. Webb, D.J. Rieman, J.C. Lee, A.M. Romanic, J.L. Adams, D.W. Hay, and D.E. Griswold. 2000. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 279 (5): L895–L902.CrossRefPubMed Underwood, D.C., R.R. Osborn, S. Bochnowicz, E.F. Webb, D.J. Rieman, J.C. Lee, A.M. Romanic, J.L. Adams, D.W. Hay, and D.E. Griswold. 2000. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 279 (5): L895–L902.CrossRefPubMed
40.
go back to reference Borbiev, T., A. Birukova, F. Liu, S. Nurmukhambetova, W.T. Gerthoffer, J.G. Garcia, and A.D. Verin. 2004. p38 MAP kinase-dependent regulation of endothelial cell permeability. American Journal of Physiology. Lung Cellular and Molecular Physiology 287 (5): L911–L918.CrossRefPubMed Borbiev, T., A. Birukova, F. Liu, S. Nurmukhambetova, W.T. Gerthoffer, J.G. Garcia, and A.D. Verin. 2004. p38 MAP kinase-dependent regulation of endothelial cell permeability. American Journal of Physiology. Lung Cellular and Molecular Physiology 287 (5): L911–L918.CrossRefPubMed
41.
go back to reference Yoshikawa, S., J.A. King, R.N. Lausch, A.M. Penton, F.G. Eyal, and J.C. Parker. 2004. Acute ventilator-induced vascular permeability and cytokine responses in isolated and in situ mouse lungs. Journal of Applied Physiology (1985. ) 97 (6): 2190–2199.CrossRef Yoshikawa, S., J.A. King, R.N. Lausch, A.M. Penton, F.G. Eyal, and J.C. Parker. 2004. Acute ventilator-induced vascular permeability and cytokine responses in isolated and in situ mouse lungs. Journal of Applied Physiology (1985. ) 97 (6): 2190–2199.CrossRef
44.
go back to reference Barnes, P.J. 2016. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacological Reviews 68 (3): 788–815.CrossRefPubMed Barnes, P.J. 2016. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacological Reviews 68 (3): 788–815.CrossRefPubMed
45.
go back to reference Chung, K.F. 2011. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 139 (6): 1470–1479.CrossRefPubMed Chung, K.F. 2011. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 139 (6): 1470–1479.CrossRefPubMed
46.
go back to reference Gaffey, K., S. Reynolds, J. Plumb, M. Kaur, and D. Singh. 2013. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. The European Respiratory Journal 42 (1): 28–41.CrossRefPubMed Gaffey, K., S. Reynolds, J. Plumb, M. Kaur, and D. Singh. 2013. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. The European Respiratory Journal 42 (1): 28–41.CrossRefPubMed
47.
go back to reference Singh, D., L. Smyth, Z. Borrill, L. Sweeney, and R. Tal-Singer. 2010. A randomized, placebo-controlled study of the effects of the p38 MAPK inhibitor SB-681323 on blood biomarkers of inflammation in COPD patients. Journal of Clinical Pharmacology 50 (1): 94–100.CrossRefPubMed Singh, D., L. Smyth, Z. Borrill, L. Sweeney, and R. Tal-Singer. 2010. A randomized, placebo-controlled study of the effects of the p38 MAPK inhibitor SB-681323 on blood biomarkers of inflammation in COPD patients. Journal of Clinical Pharmacology 50 (1): 94–100.CrossRefPubMed
48.
go back to reference Watz, H., H. Barnacle, B.F. Hartley, and R. Chan. 2014. Efficacy and safety of the p38 MAPK inhibitor losmapimod for patients with chronic obstructive pulmonary disease: A randomised, double-blind, placebo-controlled trial. The Lancet Respiratory Medicine 2 (1): 63–72.CrossRefPubMed Watz, H., H. Barnacle, B.F. Hartley, and R. Chan. 2014. Efficacy and safety of the p38 MAPK inhibitor losmapimod for patients with chronic obstructive pulmonary disease: A randomised, double-blind, placebo-controlled trial. The Lancet Respiratory Medicine 2 (1): 63–72.CrossRefPubMed
49.
go back to reference Chin, C.L., L.J. Manzel, E.E. Lehman, A.L. Humlicek, L. Shi, T.D. Starner, G.M. Denning, T.F. Murphy, S. Sethi, and D.C. Look. 2005. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. American Journal of Respiratory and Critical Care Medicine 172 (1): 85–91.CrossRefPubMedPubMedCentral Chin, C.L., L.J. Manzel, E.E. Lehman, A.L. Humlicek, L. Shi, T.D. Starner, G.M. Denning, T.F. Murphy, S. Sethi, and D.C. Look. 2005. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. American Journal of Respiratory and Critical Care Medicine 172 (1): 85–91.CrossRefPubMedPubMedCentral
50.
go back to reference Hall, D.J., M.E. Bates, L. Guar, M. Cronan, N. Korpi, and P.J. Bertics. 2005. The role of p38 MAPK in rhinovirus-induced monocyte chemoattractant protein-1 production by monocytic-lineage cells. Journal of Immunology 174 (12): 8056–8063.CrossRef Hall, D.J., M.E. Bates, L. Guar, M. Cronan, N. Korpi, and P.J. Bertics. 2005. The role of p38 MAPK in rhinovirus-induced monocyte chemoattractant protein-1 production by monocytic-lineage cells. Journal of Immunology 174 (12): 8056–8063.CrossRef
51.
go back to reference Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.CrossRefPubMedPubMedCentral Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.CrossRefPubMedPubMedCentral
Metadata
Title
p38 Inhibition Ameliorates Inspiratory Resistive Breathing-Induced Pulmonary Inflammation
Authors
Dimitrios Toumpanakis
Vyronia Vassilakopoulou
Eleftheria Mizi
Athanasia Chatzianastasiou
Konstantinos Loverdos
Ioanna Vraila
Fotis Perlikos
Dionysios Tsoukalas
Charoula-Eleni Giannakopoulou
Adamantia Sotiriou
Maria Dettoraki
Vassiliki Karavana
Theodoros Vassilakopoulos
Publication date
01-10-2018
Publisher
Springer US
Published in
Inflammation / Issue 5/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0831-6

Other articles of this Issue 5/2018

Inflammation 5/2018 Go to the issue