Skip to main content
Top
Published in: Inflammation 2/2018

01-03-2018 | ORIGINAL ARTICLE

α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds

Authors: Jiao-Yong Li, Shu-Kun Jiang, Lin-Lin Wang, Meng-Zhou Zhang, Shuai Wang, Zhen-Fei Jiang, Yu-Li Liu, Hao Cheng, Miao Zhang, Rui Zhao, Da-Wei Guan

Published in: Inflammation | Issue 2/2018

Login to get access

Abstract

The α7 nicotinic acetylcholine receptor (α7-nAChR) is associated with inflammation, re-epithelialization, and angiogenesis in wound healing process. A recent study demonstrated that PNU-282987, a selective agonist of α7-nAChR, accelerates the repair of diabetic excisional wounds. Whether α7-nAChR activation promotes non-diabetic wounds healing is unknown. The aim of this study was to evaluate the effects of α7-nAChR activation on non-diabetic wound healing. The effects were evaluated in two wound models. In the first model, the wound was covered with a semi-permeable transparent dressing. In the second model, the wound was left uncovered. In both models, the mice were randomly assigned to two treatment groups: saline or PNU282987 (25 mice in each group). In covered wounds, we found that α7-nAChR activation inhibited re-epithelialization, angiogenesis, and epithelial cells proliferation, promoted neo-epithelial detachment, and suppressed neutrophil infiltration and the expression of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). However, in uncovered wounds, we observed that α7-nAChR activation promoted re-epithelialization and angiogenesis, inhibited neutrophil infiltration and the expression of high mobility group box (HMGB)-1, epidermal growth factor (EGF), and VEGF. In conclusion, this data demonstrated that α7-nAChR activation inhibited wound healing in covered wounds but played an opposite role in uncovered wounds. The opposite effect might be primarily due to inhibition of inflammation.
Literature
1.
go back to reference Singer, A.J., and R.A. Clark. 1999. Cutaneous wound healing. New England Journal of Medicine 341: 738–746.CrossRefPubMed Singer, A.J., and R.A. Clark. 1999. Cutaneous wound healing. New England Journal of Medicine 341: 738–746.CrossRefPubMed
2.
go back to reference Gurtner, G.C., S. Werner, Y. Barrandon, and M.T. Longaker. 2008. Wound repair and regeneration. Nature 453: 314–321.CrossRefPubMed Gurtner, G.C., S. Werner, Y. Barrandon, and M.T. Longaker. 2008. Wound repair and regeneration. Nature 453: 314–321.CrossRefPubMed
3.
go back to reference Werner, S., and R. Grose. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83: 835–870.CrossRefPubMed Werner, S., and R. Grose. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83: 835–870.CrossRefPubMed
4.
go back to reference Pillai, S., and S. Chellappan. 2012. Alpha7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition. Current Drug Targets 13: 671–679.CrossRefPubMed Pillai, S., and S. Chellappan. 2012. Alpha7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition. Current Drug Targets 13: 671–679.CrossRefPubMed
5.
go back to reference Kurzen, H., I. Wessler, C. Kirkpatrick, K. Kawashima, and S. Grando. 2007. The non-neuronal cholinergic system of human skin. Hormone and Metabolic Research 39: 125–135.CrossRefPubMed Kurzen, H., I. Wessler, C. Kirkpatrick, K. Kawashima, and S. Grando. 2007. The non-neuronal cholinergic system of human skin. Hormone and Metabolic Research 39: 125–135.CrossRefPubMed
6.
go back to reference Chernyavsky, A.I., J. Arredondo, J. Qian, V. Galitovskiy, and S.A. Grando. 2009. Coupling of ionic events to protein kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of 2-integrin expression and Rho Kinase activity. Journal of Biological Chemistry 284: 22140–22148.CrossRefPubMedPubMedCentral Chernyavsky, A.I., J. Arredondo, J. Qian, V. Galitovskiy, and S.A. Grando. 2009. Coupling of ionic events to protein kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of 2-integrin expression and Rho Kinase activity. Journal of Biological Chemistry 284: 22140–22148.CrossRefPubMedPubMedCentral
7.
go back to reference Grando, S.A., M.R. Pittelkow, and K.U. Schallreuter. 2006. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. Journal of Investigative Dermatology 126: 1948–1965.CrossRefPubMed Grando, S.A., M.R. Pittelkow, and K.U. Schallreuter. 2006. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. Journal of Investigative Dermatology 126: 1948–1965.CrossRefPubMed
8.
go back to reference Heeschen, C., M. Weis, A. Aicher, S. Dimmeler, and J.P. Cooke. 2002. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. Journal of Clinical Investigation 110: 527–536.CrossRefPubMedPubMedCentral Heeschen, C., M. Weis, A. Aicher, S. Dimmeler, and J.P. Cooke. 2002. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. Journal of Clinical Investigation 110: 527–536.CrossRefPubMedPubMedCentral
9.
go back to reference Gallowitsch-Puerta, M. 2005. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine α7 receptor. Annals of the New York Academy of Sciences 1062: 209–219.CrossRefPubMed Gallowitsch-Puerta, M. 2005. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine α7 receptor. Annals of the New York Academy of Sciences 1062: 209–219.CrossRefPubMed
10.
go back to reference Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388.CrossRefPubMed Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421: 384–388.CrossRefPubMed
11.
go back to reference Fan, Y., T. Yu, T. Wang, W. Liu, R. Zhao, S. Zhang, W. Ma, J. Zheng, and D.W. Guan. 2011. Nicotinic acetylcholine receptor alpha7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochemistry and Cell Biology 135: 375–387.CrossRefPubMed Fan, Y., T. Yu, T. Wang, W. Liu, R. Zhao, S. Zhang, W. Ma, J. Zheng, and D.W. Guan. 2011. Nicotinic acetylcholine receptor alpha7 subunit is time-dependently expressed in distinct cell types during skin wound healing in mice. Histochemistry and Cell Biology 135: 375–387.CrossRefPubMed
12.
go back to reference Jacinto, A., A. Martinez-Arias, and P. Martin. 2001. Mechanisms of epithelial fusion and repair. Nature Cell Biology 3: E117–E123.CrossRefPubMed Jacinto, A., A. Martinez-Arias, and P. Martin. 2001. Mechanisms of epithelial fusion and repair. Nature Cell Biology 3: E117–E123.CrossRefPubMed
13.
go back to reference Dovi, J.V., A.M. Szpaderska, and L.A. DiPietro. 2004. Neutrophil function in the healing wound: adding insult to injury? Thrombosis and Haemostasis 92: 275–280.PubMed Dovi, J.V., A.M. Szpaderska, and L.A. DiPietro. 2004. Neutrophil function in the healing wound: adding insult to injury? Thrombosis and Haemostasis 92: 275–280.PubMed
14.
go back to reference Fang, Y., and K.K.H. Svoboda. 2005. Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology 32: 1200–1207.CrossRefPubMedPubMedCentral Fang, Y., and K.K.H. Svoboda. 2005. Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology 32: 1200–1207.CrossRefPubMedPubMedCentral
15.
go back to reference Kurzen, H., C. Henrich, D. Booken, N. Poenitz, A. Gratchev, C. Klemke, M. Engstner, S. Goerdt, and N. Maas-Szabowski. 2006. Functional characterization of the epidermal cholinergic system in vitro. Journal of Investigative Dermatology 126: 2458–2472.CrossRefPubMed Kurzen, H., C. Henrich, D. Booken, N. Poenitz, A. Gratchev, C. Klemke, M. Engstner, S. Goerdt, and N. Maas-Szabowski. 2006. Functional characterization of the epidermal cholinergic system in vitro. Journal of Investigative Dermatology 126: 2458–2472.CrossRefPubMed
16.
go back to reference Arredondo, J. 2002. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. The Journal of Cell Biology 159: 325–336.CrossRefPubMedPubMedCentral Arredondo, J. 2002. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. The Journal of Cell Biology 159: 325–336.CrossRefPubMedPubMedCentral
17.
go back to reference Chernyavsky, A.I. 2004. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. Journal of Cell Science 117: 5665–5679.CrossRefPubMed Chernyavsky, A.I. 2004. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. Journal of Cell Science 117: 5665–5679.CrossRefPubMed
18.
go back to reference Arredondo, J., V.T. Nguyen, A.I. Chernyavsky, D. Bercovich, A. Orr-Urtreger, D.E. Vetter, and S.A. Grando. 2003. Functional role of alpha7 nicotinic receptor in physiological control of cutaneous homeostasis. Life Sciences 72: 2063–2067.CrossRefPubMed Arredondo, J., V.T. Nguyen, A.I. Chernyavsky, D. Bercovich, A. Orr-Urtreger, D.E. Vetter, and S.A. Grando. 2003. Functional role of alpha7 nicotinic receptor in physiological control of cutaneous homeostasis. Life Sciences 72: 2063–2067.CrossRefPubMed
19.
go back to reference Chernyavsky, A.I., J. Arredondo, E. Karlsson, I. Wessler, and S.A. Grando. 2005. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry 280: 39220–39228.CrossRefPubMed Chernyavsky, A.I., J. Arredondo, E. Karlsson, I. Wessler, and S.A. Grando. 2005. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry 280: 39220–39228.CrossRefPubMed
20.
21.
go back to reference Ng, M.K., J. Wu, E. Chang, B.Y. Wang, R. Katzenberg-Clark, A. Ishii-Watabe, and J.P. Cooke. 2007. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 106–112.CrossRefPubMed Ng, M.K., J. Wu, E. Chang, B.Y. Wang, R. Katzenberg-Clark, A. Ishii-Watabe, and J.P. Cooke. 2007. A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 106–112.CrossRefPubMed
22.
go back to reference Heeschen, C., E. Chang, A. Aicher, and J.P. Cooke. 2006. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. Journal of the American College of Cardiology 48: 2553–2560.CrossRefPubMed Heeschen, C., E. Chang, A. Aicher, and J.P. Cooke. 2006. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. Journal of the American College of Cardiology 48: 2553–2560.CrossRefPubMed
23.
go back to reference Park, Y.J., T. Lee, J. Ha, I.M. Jung, J.K. Chung, and S.J. Kim. 2008. Effect of nicotine on human umbilical vein endothelial cells (HUVECs) migration and angiogenesis. Vascular Pharmacology 49: 32–36.CrossRefPubMed Park, Y.J., T. Lee, J. Ha, I.M. Jung, J.K. Chung, and S.J. Kim. 2008. Effect of nicotine on human umbilical vein endothelial cells (HUVECs) migration and angiogenesis. Vascular Pharmacology 49: 32–36.CrossRefPubMed
24.
go back to reference Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7: 833–839.CrossRefPubMed Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7: 833–839.CrossRefPubMed
25.
go back to reference Egleton, R.D., K.C. Brown, and P. Dasgupta. 2009. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacology & Therapeutics 121: 205–223.CrossRef Egleton, R.D., K.C. Brown, and P. Dasgupta. 2009. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacology & Therapeutics 121: 205–223.CrossRef
26.
go back to reference Pena, V.B., I.C. Bonini, S.S. Antollini, T. Kobayashi, and F.J. Barrantes. 2011. Alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry 112: 3276–3288.CrossRefPubMed Pena, V.B., I.C. Bonini, S.S. Antollini, T. Kobayashi, and F.J. Barrantes. 2011. Alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry 112: 3276–3288.CrossRefPubMed
27.
go back to reference Li, X., and H. Wang. 2006. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sciences 78: 1863–1870.CrossRefPubMed Li, X., and H. Wang. 2006. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sciences 78: 1863–1870.CrossRefPubMed
28.
go back to reference Jacobi, J., J.J. Jang, U. Sundram, H. Dayoub, L.F. Fajardo, and J.P. Cooke. 2002. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. The American Journal of Pathology 161: 97–104.CrossRefPubMedPubMedCentral Jacobi, J., J.J. Jang, U. Sundram, H. Dayoub, L.F. Fajardo, and J.P. Cooke. 2002. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. The American Journal of Pathology 161: 97–104.CrossRefPubMedPubMedCentral
29.
go back to reference Dong, M.W., M. Li, J. Chen, T.T. Fu, K.Z. Lin, G.H. Ye, J.G. Han, X.P. Feng, X.B. Li, L.S. Yu, and Y.Y. Fan. 2016. Activation of alpha7nAChR promotes diabetic wound healing by suppressing AGE-induced TNF-alpha production. Inflammation 39: 687–699.CrossRefPubMed Dong, M.W., M. Li, J. Chen, T.T. Fu, K.Z. Lin, G.H. Ye, J.G. Han, X.P. Feng, X.B. Li, L.S. Yu, and Y.Y. Fan. 2016. Activation of alpha7nAChR promotes diabetic wound healing by suppressing AGE-induced TNF-alpha production. Inflammation 39: 687–699.CrossRefPubMed
30.
go back to reference Su, X., J.W. Lee, Z.A. Matthay, G. Mednick, T. Uchida, X. Fang, N. Gupta, and M.A. Matthay. 2007. Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology 37: 186–192.CrossRefPubMedPubMedCentral Su, X., J.W. Lee, Z.A. Matthay, G. Mednick, T. Uchida, X. Fang, N. Gupta, and M.A. Matthay. 2007. Activation of the α7 nAChR reduces acid-induced acute lung injury in mice and rats. American Journal of Respiratory Cell and Molecular Biology 37: 186–192.CrossRefPubMedPubMedCentral
31.
go back to reference Grando, S.A. 2006. Cholinergic control of epidermal cohesion. Experimental Dermatology 15: 265–282.CrossRefPubMed Grando, S.A. 2006. Cholinergic control of epidermal cohesion. Experimental Dermatology 15: 265–282.CrossRefPubMed
32.
go back to reference Morimoto, N., S. Takemoto, T. Kawazoe, and S. Suzuki. 2008. Nicotine at a low concentration promotes wound healing. Journal of Surgical Research 145: 199–204.CrossRefPubMed Morimoto, N., S. Takemoto, T. Kawazoe, and S. Suzuki. 2008. Nicotine at a low concentration promotes wound healing. Journal of Surgical Research 145: 199–204.CrossRefPubMed
33.
go back to reference Liem, P.H., N. Morimoto, R. Ito, K. Kawai, and S. Suzuki. 2013. Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. Journal of Surgical Research 182: 353–361.CrossRefPubMed Liem, P.H., N. Morimoto, R. Ito, K. Kawai, and S. Suzuki. 2013. Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. Journal of Surgical Research 182: 353–361.CrossRefPubMed
34.
go back to reference Kloeters, O., C. Schierle, A. Tandara, and T.A. Mustoe. 2008. The use of a semiocclusive dressing reduces epidermal inflammatory cytokine expression and mitigates dermal proliferation and inflammation in a rat incisional model. Wound Repair and Regeneration 16: 568–575.CrossRefPubMedPubMedCentral Kloeters, O., C. Schierle, A. Tandara, and T.A. Mustoe. 2008. The use of a semiocclusive dressing reduces epidermal inflammatory cytokine expression and mitigates dermal proliferation and inflammation in a rat incisional model. Wound Repair and Regeneration 16: 568–575.CrossRefPubMedPubMedCentral
35.
go back to reference Dyson, M., S. Young, C.L. Pendle, D.F. Webster, and S.M. Lang. 1988. Comparison of the effects of moist and dry conditions on dermal repair. Journal of Investigative Dermatology 91: 434–439.CrossRefPubMed Dyson, M., S. Young, C.L. Pendle, D.F. Webster, and S.M. Lang. 1988. Comparison of the effects of moist and dry conditions on dermal repair. Journal of Investigative Dermatology 91: 434–439.CrossRefPubMed
36.
go back to reference Hien, N.T., S.E. Prawer, and H.I. Katz. 1988. Facilitated wound healing using transparent film dressing following Mohs micrographic surgery. Archives of Dermatology 124: 903–906.CrossRefPubMed Hien, N.T., S.E. Prawer, and H.I. Katz. 1988. Facilitated wound healing using transparent film dressing following Mohs micrographic surgery. Archives of Dermatology 124: 903–906.CrossRefPubMed
37.
go back to reference Park, S.A., L.B. Teixeira, V.K. Raghunathan, J. Covert, R.R. Dubielzig, R.R. Isseroff, M. Schurr, N.L. Abbott, J. McAnulty, and C.J. Murphy. 2014. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair and Regeneration 22: 368–380.CrossRefPubMed Park, S.A., L.B. Teixeira, V.K. Raghunathan, J. Covert, R.R. Dubielzig, R.R. Isseroff, M. Schurr, N.L. Abbott, J. McAnulty, and C.J. Murphy. 2014. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair and Regeneration 22: 368–380.CrossRefPubMed
38.
go back to reference Eming, S.A., T. Krieg, and J.M. Davidson. 2007. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127: 514–525.CrossRefPubMed Eming, S.A., T. Krieg, and J.M. Davidson. 2007. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127: 514–525.CrossRefPubMed
39.
go back to reference Dovi, J.V., L.K. He, and L.A. DiPietro. 2003. Accelerated wound closure in neutrophil-depleted mice. Journal of Leukocyte Biology 73: 448–455.CrossRefPubMed Dovi, J.V., L.K. He, and L.A. DiPietro. 2003. Accelerated wound closure in neutrophil-depleted mice. Journal of Leukocyte Biology 73: 448–455.CrossRefPubMed
40.
go back to reference Weiss, S.J. 1989. Tissue destruction by neutrophils. New England Journal of Medicine 320: 365–376.CrossRefPubMed Weiss, S.J. 1989. Tissue destruction by neutrophils. New England Journal of Medicine 320: 365–376.CrossRefPubMed
41.
go back to reference Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S.R. McKercher. 2003. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology 13: 1122–1128.CrossRefPubMed Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S.R. McKercher. 2003. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Current Biology 13: 1122–1128.CrossRefPubMed
42.
go back to reference Stramer, B.M., R. Mori, and P. Martin. 2007. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology 127: 1009–1017.CrossRefPubMed Stramer, B.M., R. Mori, and P. Martin. 2007. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. Journal of Investigative Dermatology 127: 1009–1017.CrossRefPubMed
43.
go back to reference Wong, S.L., M. Demers, K. Martinod, M. Gallant, Y. Wang, A.B. Goldfine, C.R. Kahn, and D.D. Wagner. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine 21: 815–819.CrossRefPubMedPubMedCentral Wong, S.L., M. Demers, K. Martinod, M. Gallant, Y. Wang, A.B. Goldfine, C.R. Kahn, and D.D. Wagner. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine 21: 815–819.CrossRefPubMedPubMedCentral
44.
45.
go back to reference Lan, C.C., C.S. Wu, S.M. Huang, I.H. Wu, and G.S. Chen. 2013. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 62: 2530–2538.CrossRefPubMedPubMedCentral Lan, C.C., C.S. Wu, S.M. Huang, I.H. Wu, and G.S. Chen. 2013. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes 62: 2530–2538.CrossRefPubMedPubMedCentral
46.
go back to reference Baltzis, D., I. Eleftheriadou, and A. Veves. 2014. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy 31: 817–836.CrossRefPubMed Baltzis, D., I. Eleftheriadou, and A. Veves. 2014. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy 31: 817–836.CrossRefPubMed
47.
go back to reference Xu, F., C. Zhang, and D.T. Graves. 2013. Abnormal cell responses and role of TNF-alpha in impaired diabetic wound healing. BioMed Research International 2013: 754802.PubMedPubMedCentral Xu, F., C. Zhang, and D.T. Graves. 2013. Abnormal cell responses and role of TNF-alpha in impaired diabetic wound healing. BioMed Research International 2013: 754802.PubMedPubMedCentral
48.
49.
go back to reference Razani-Boroujerdi, S., S.P. Singh, C. Knall, F.F. Hahn, J.C. Peña-Philippides, R. Kalra, R.J. Langley, and M.L. Sopori. 2004. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology 230: 1–9.CrossRefPubMed Razani-Boroujerdi, S., S.P. Singh, C. Knall, F.F. Hahn, J.C. Peña-Philippides, R. Kalra, R.J. Langley, and M.L. Sopori. 2004. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology 230: 1–9.CrossRefPubMed
50.
go back to reference Kishibe, M., T.M. Griffin, and K.A. Radek. 2015. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. International Immunopharmacology 29: 63–70.CrossRefPubMedPubMedCentral Kishibe, M., T.M. Griffin, and K.A. Radek. 2015. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses. International Immunopharmacology 29: 63–70.CrossRefPubMedPubMedCentral
Metadata
Title
α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds
Authors
Jiao-Yong Li
Shu-Kun Jiang
Lin-Lin Wang
Meng-Zhou Zhang
Shuai Wang
Zhen-Fei Jiang
Yu-Li Liu
Hao Cheng
Miao Zhang
Rui Zhao
Da-Wei Guan
Publication date
01-03-2018
Publisher
Springer US
Published in
Inflammation / Issue 2/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0703-5

Other articles of this Issue 2/2018

Inflammation 2/2018 Go to the issue