Skip to main content
Top
Published in: Inflammation 2/2018

01-03-2018 | ORIGINAL ARTICLE

Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia

Authors: Wenfang Lai, XiuLi Xie, Xiaoqin Zhang, Yingzheng Wang, Kedan Chu, John Brown, Lidian Chen, Guizhu Hong

Published in: Inflammation | Issue 2/2018

Login to get access

Abstract

Salidroside is neuroprotective across a wide therapeutic time-window after cerebral ischemia-reperfusion injury (IRI). Here, we investigated the role of complement in mediating effects of salidroside after cerebral IRI in rats. Rats were administrated with vehicle or salidroside 50 mg/kg, given daily for either 24 or 48 h, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 1 h. Levels of proteins in ischemic brain were measured by immunofluorescence and western blotting. We observed early increases in the deposition of immunoglobulin M, mannose-binding lectin 2, and annexin IV on cerebral endothelial cells, induction of the complement components C3 and C3a, by 24 h after IRI, and a later significant increase in the complement component C1q by 48 h. Salidroside prevented these changes. The neuroplasticity-related early growth response proteins Egr1, Egr2, and Egr4 and activity-regulated cytoskeleton-associated protein increased transiently in the first 6 h after IRI but then decreased below baseline by 48 h after IRI. Neither salidroside nor a C3a receptor antagonist (C3aRA) affected these proteins 24 h after IRI, but both reversed their later decreases to similar and non-additive extents. Salidroside and C3aRA increased NeuN in a non-additive manner after IRI. Our results suggest that salidroside exerts neuroprotection by reducing early activation of the lectin pathway on the cerebral endothelium and inhibiting the gradual activation of the classical pathway after cerebral IRI. This prolonged neuroprotection may depend, at least in part, on increased expression of neuroplasticity-related genes driven by reduced complement activation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158: 1074–1089.CrossRefPubMed Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158: 1074–1089.CrossRefPubMed
2.
go back to reference Cowell, R.M., J.M. Plane, and F.S. Silverstein. 2003. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. Journal of Neuroscience 23: 9459–9468.PubMed Cowell, R.M., J.M. Plane, and F.S. Silverstein. 2003. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. Journal of Neuroscience 23: 9459–9468.PubMed
3.
go back to reference Mocco, J., W.J. Mack, A.F. Ducruet, S.A. Sosunov, M.E. Sughrue, B.G. Hassid, M.N. Nair, I. Laufer, R.J. Komotar, M. Claire, H. Holland, D.J. Pinsky, and E.J. Connolly. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circulation Research 99: 209–217.CrossRefPubMed Mocco, J., W.J. Mack, A.F. Ducruet, S.A. Sosunov, M.E. Sughrue, B.G. Hassid, M.N. Nair, I. Laufer, R.J. Komotar, M. Claire, H. Holland, D.J. Pinsky, and E.J. Connolly. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circulation Research 99: 209–217.CrossRefPubMed
4.
go back to reference Elvington, A., C. Atkinson, L. Kulik, H. Zhu, J. Yu, M.S. Kindy, V.M. Holers, and S. Tomlinson. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188: 1460–1468.CrossRef Elvington, A., C. Atkinson, L. Kulik, H. Zhu, J. Yu, M.S. Kindy, V.M. Holers, and S. Tomlinson. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188: 1460–1468.CrossRef
5.
go back to reference Ducruet, A.F., S.A. Sosunov, B.E. Zacharia, J. Gorski, M.L. Yeh, P. Derosa, G. Cohen, P.R. Gigante, and E.J. Connolly. 2011. The neuroprotective effect of genetic mannose-binding lectin deficiency is not sustained in the sub-acute phase of stroke. Translational Stroke Research 2: 588–599.CrossRefPubMedCentralPubMed Ducruet, A.F., S.A. Sosunov, B.E. Zacharia, J. Gorski, M.L. Yeh, P. Derosa, G. Cohen, P.R. Gigante, and E.J. Connolly. 2011. The neuroprotective effect of genetic mannose-binding lectin deficiency is not sustained in the sub-acute phase of stroke. Translational Stroke Research 2: 588–599.CrossRefPubMedCentralPubMed
6.
go back to reference Cervera, A., A.M. Planas, C. Justicia, X. Urra, J.C. Jensenius, F. Torres, F. Lozano, and A. Chamorro. 2010. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS One 5: e8433.CrossRefPubMedCentralPubMed Cervera, A., A.M. Planas, C. Justicia, X. Urra, J.C. Jensenius, F. Torres, F. Lozano, and A. Chamorro. 2010. Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS One 5: e8433.CrossRefPubMedCentralPubMed
7.
go back to reference Morrison, H., J. Frye, G. Davis-Gorman, J. Funk, P. McDonagh, G. Stahl, and L. Ritter. 2011. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke. Current Neurovascular Research 8: 52–63.CrossRefPubMedCentralPubMed Morrison, H., J. Frye, G. Davis-Gorman, J. Funk, P. McDonagh, G. Stahl, and L. Ritter. 2011. The contribution of mannose binding lectin to reperfusion injury after ischemic stroke. Current Neurovascular Research 8: 52–63.CrossRefPubMedCentralPubMed
8.
go back to reference Orsini, F., P. Villa, S. Parrella, R. Zangari, E.R. Zanier, R. Gesuete, M. Stravalaci, S. Fumagalli, R. Ottria, J.J. Reina, A. Paladini, E. Micotti, R. Ribeiro-Viana, J. Rojo, V.I. Pavlov, G.L. Stahl, A. Bernardi, M. Gobbi, and M.G. De Simoni. 2012. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 126: 1484–1494.CrossRefPubMedCentralPubMed Orsini, F., P. Villa, S. Parrella, R. Zangari, E.R. Zanier, R. Gesuete, M. Stravalaci, S. Fumagalli, R. Ottria, J.J. Reina, A. Paladini, E. Micotti, R. Ribeiro-Viana, J. Rojo, V.I. Pavlov, G.L. Stahl, A. Bernardi, M. Gobbi, and M.G. De Simoni. 2012. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 126: 1484–1494.CrossRefPubMedCentralPubMed
9.
go back to reference de la Rosa, X., A. Cervera, A.K. Kristoffersen, C.P. Valdes, H.M. Varma, C. Justicia, T. Durduran, A. Chamorro, and A.M. Planas. 2014. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 45: 1453–1459.CrossRefPubMed de la Rosa, X., A. Cervera, A.K. Kristoffersen, C.P. Valdes, H.M. Varma, C. Justicia, T. Durduran, A. Chamorro, and A.M. Planas. 2014. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 45: 1453–1459.CrossRefPubMed
10.
go back to reference Osthoff, M., M. Katan, F. Fluri, P. Schuetz, R. Bingisser, L. Kappos, A.J. Steck, S.T. Engelter, B. Mueller, M. Christ-Crain, and M. Trendelenburg. 2011. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One 6: e21338.CrossRefPubMedCentralPubMed Osthoff, M., M. Katan, F. Fluri, P. Schuetz, R. Bingisser, L. Kappos, A.J. Steck, S.T. Engelter, B. Mueller, M. Christ-Crain, and M. Trendelenburg. 2011. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One 6: e21338.CrossRefPubMedCentralPubMed
11.
go back to reference Petry, F., P.J. McClive, M. Botto, B.J. Morley, G. Morahan, and M. Loos. 1996. The mouse C1q genes are clustered on chromosome 4 and show conservation of gene organization. Immunogenetics 43: 370–376.PubMed Petry, F., P.J. McClive, M. Botto, B.J. Morley, G. Morahan, and M. Loos. 1996. The mouse C1q genes are clustered on chromosome 4 and show conservation of gene organization. Immunogenetics 43: 370–376.PubMed
12.
go back to reference De Simoni, M.G., E. Rossi, C. Storini, S. Pizzimenti, C. Echart, and L. Bergamaschini. 2004. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. American Journal of Pathology 164: 1857–1863.CrossRefPubMedCentralPubMed De Simoni, M.G., E. Rossi, C. Storini, S. Pizzimenti, C. Echart, and L. Bergamaschini. 2004. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. American Journal of Pathology 164: 1857–1863.CrossRefPubMedCentralPubMed
13.
go back to reference Elvington, A., C. Atkinson, H. Zhu, J. Yu, K. Takahashi, G.L. Stahl, M.S. Kindy, and S. Tomlinson. 2012. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. Journal of Immunology 189: 4640–4647.CrossRef Elvington, A., C. Atkinson, H. Zhu, J. Yu, K. Takahashi, G.L. Stahl, M.S. Kindy, and S. Tomlinson. 2012. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. Journal of Immunology 189: 4640–4647.CrossRef
14.
go back to reference Alawieh, A., and S. Tomlinson. 2016. Injury site-specific targeting of complement inhibitors for treating stroke. Immunological Reviews 274: 270–280.CrossRefPubMedCentralPubMed Alawieh, A., and S. Tomlinson. 2016. Injury site-specific targeting of complement inhibitors for treating stroke. Immunological Reviews 274: 270–280.CrossRefPubMedCentralPubMed
15.
go back to reference Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMed
16.
go back to reference Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed
17.
go back to reference Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed
18.
go back to reference Cole, A.J., D.W. Saffen, J.M. Baraban, and P.F. Worley. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476.CrossRefPubMed Cole, A.J., D.W. Saffen, J.M. Baraban, and P.F. Worley. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476.CrossRefPubMed
19.
go back to reference O'Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed O'Donovan, K.J., W.G. Tourtellotte, J. Millbrandt, and J.M. Baraban. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends in Neurosciences 22: 167–173.CrossRefPubMed
20.
go back to reference Kawahara, N., Y. Wang, A. Mukasa, K. Furuya, T. Shimizu, T. Hamakubo, H. Aburatani, T. Kodama, and T. Kirino. 2004. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 24: 212–223.CrossRef Kawahara, N., Y. Wang, A. Mukasa, K. Furuya, T. Shimizu, T. Hamakubo, H. Aburatani, T. Kodama, and T. Kirino. 2004. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 24: 212–223.CrossRef
21.
go back to reference Pérez-Cadahía, B., B. Drobic, and J.R. Davie. 2011. Activation and function of immediate-early genes in the nervous. Biochemistry and Cell Biology 89: 61–73.CrossRefPubMed Pérez-Cadahía, B., B. Drobic, and J.R. Davie. 2011. Activation and function of immediate-early genes in the nervous. Biochemistry and Cell Biology 89: 61–73.CrossRefPubMed
22.
go back to reference Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed
23.
go back to reference Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke 27: 1616–1622 discussion 1623.CrossRefPubMed Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. neurological and pathological evaluation of an improved model. Stroke 27: 1616–1622 discussion 1623.CrossRefPubMed
24.
go back to reference Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed
25.
go back to reference Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, and J. Mocco. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow & Metabolism 28: 1048–1058.CrossRef Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, and J. Mocco. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow & Metabolism 28: 1048–1058.CrossRef
26.
go back to reference Lai, W., X. Tian, Q. Xiang, K. Chu, Y. Wei, J. Deng, S. Zhang, J. Brown, and G. Hong. 2015. 11Beta-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedCentralPubMed Lai, W., X. Tian, Q. Xiang, K. Chu, Y. Wei, J. Deng, S. Zhang, J. Brown, and G. Hong. 2015. 11Beta-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedCentralPubMed
28.
go back to reference Atkinson, C., H. Zhu, F. Qiao, J.C. Varela, J. Yu, H. Song, M.S. Kindy, and S. Tomlinson. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177: 7266–7274.CrossRef Atkinson, C., H. Zhu, F. Qiao, J.C. Varela, J. Yu, H. Song, M.S. Kindy, and S. Tomlinson. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177: 7266–7274.CrossRef
29.
go back to reference Mack, W.J., M.E. Sughrue, A.F. Ducruet, J. Mocco, S.A. Sosunov, B.G. Hassid, J.Z. Silverberg, V.S. Ten, D.J. Pinsky, and E.J. Connolly. 2006. Temporal pattern of C1q deposition after transient focal cerebral ischemia. Journal of Neuroscience Research 83: 883–889.CrossRefPubMed Mack, W.J., M.E. Sughrue, A.F. Ducruet, J. Mocco, S.A. Sosunov, B.G. Hassid, J.Z. Silverberg, V.S. Ten, D.J. Pinsky, and E.J. Connolly. 2006. Temporal pattern of C1q deposition after transient focal cerebral ischemia. Journal of Neuroscience Research 83: 883–889.CrossRefPubMed
30.
go back to reference Luo, H., W. Li, F. Yang, L. Zhou, P. Wen, and J. Zhou. 2013. Expressions of complement C1q and C3c in rat brain tissues with cerebral ischemia/reperfusion injury. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29: 897–900.PubMed Luo, H., W. Li, F. Yang, L. Zhou, P. Wen, and J. Zhou. 2013. Expressions of complement C1q and C3c in rat brain tissues with cerebral ischemia/reperfusion injury. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29: 897–900.PubMed
31.
go back to reference Silverman, S.M., B.J. Kim, G.R. Howell, J. Miller, S.W. John, R.J. Wordinger, and A.F. Clark. 2016. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Molecular Neurodegeneration 11: 24.CrossRefPubMedCentralPubMed Silverman, S.M., B.J. Kim, G.R. Howell, J. Miller, S.W. John, R.J. Wordinger, and A.F. Clark. 2016. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Molecular Neurodegeneration 11: 24.CrossRefPubMedCentralPubMed
32.
go back to reference Lee, Y., J.C. Jung, S. Jang, J. Kim, Z. Ali, I.A. Khan, and S. Oh. 2013. Anti-inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evidence-based Complementary and Alternative Medicine 2013: 514049.PubMedCentralPubMed Lee, Y., J.C. Jung, S. Jang, J. Kim, Z. Ali, I.A. Khan, and S. Oh. 2013. Anti-inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evidence-based Complementary and Alternative Medicine 2013: 514049.PubMedCentralPubMed
33.
go back to reference Bozon, B., S. Davis, and S. Laroche. 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695–701.CrossRefPubMed Bozon, B., S. Davis, and S. Laroche. 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695–701.CrossRefPubMed
34.
go back to reference Jones, M.W., M.L. Errington, P.J. French, A. Fine, T.V. Bliss, S. Garel, P. Charnay, B. Bozon, S. Laroche, and S. Davis. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience 4: 289–296.CrossRefPubMed Jones, M.W., M.L. Errington, P.J. French, A. Fine, T.V. Bliss, S. Garel, P. Charnay, B. Bozon, S. Laroche, and S. Davis. 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience 4: 289–296.CrossRefPubMed
35.
go back to reference Lee, J.L., B.J. Everitt, and K.L. Thomas. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304: 839–843.CrossRefPubMed Lee, J.L., B.J. Everitt, and K.L. Thomas. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304: 839–843.CrossRefPubMed
36.
go back to reference Inokuchi, K., A. Murayama, and F. Ozawa. 1996. MRNA differential display reveals Krox-20 as a neural plasticity-regulated gene in the rat hippocampus. Biochemical and Biophysical Research Communications 221: 430–436.CrossRefPubMed Inokuchi, K., A. Murayama, and F. Ozawa. 1996. MRNA differential display reveals Krox-20 as a neural plasticity-regulated gene in the rat hippocampus. Biochemical and Biophysical Research Communications 221: 430–436.CrossRefPubMed
37.
go back to reference Williams, J., M. Dragunow, P. Lawlor, S. Mason, W.C. Abraham, J. Leah, R. Bravo, J. Demmer, and W. Tate. 1995. Krox20 may play a key role in the stabilization of long-term potentiation. Brain Research. Molecular Brain Research 28: 87–93.CrossRefPubMed Williams, J., M. Dragunow, P. Lawlor, S. Mason, W.C. Abraham, J. Leah, R. Bravo, J. Demmer, and W. Tate. 1995. Krox20 may play a key role in the stabilization of long-term potentiation. Brain Research. Molecular Brain Research 28: 87–93.CrossRefPubMed
38.
go back to reference DeSteno, D.A., and C. Schmauss. 2008. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 152: 417–428.CrossRefPubMedCentralPubMed DeSteno, D.A., and C. Schmauss. 2008. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience 152: 417–428.CrossRefPubMedCentralPubMed
39.
go back to reference Li, L., J. Carter, X. Gao, J. Whitehead, and W.G. Tourtellotte. 2005. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Molecular & Cellular Biology 25: 10286–10300.CrossRef Li, L., J. Carter, X. Gao, J. Whitehead, and W.G. Tourtellotte. 2005. The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Molecular & Cellular Biology 25: 10286–10300.CrossRef
40.
go back to reference Honkaniemi, J., B.A. States, P.R. Weinstein, J. Espinoza, and F.R. Sharp. 1997. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism 17: 636–646.CrossRef Honkaniemi, J., B.A. States, P.R. Weinstein, J. Espinoza, and F.R. Sharp. 1997. Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism 17: 636–646.CrossRef
41.
go back to reference Honkaniemi, J., and F.R. Sharp. 1996. Global ischemia induces immediate-early genes encoding zinc finger transcription factors. Journal of Cerebral Blood Flow & Metabolism 16: 557–565.CrossRef Honkaniemi, J., and F.R. Sharp. 1996. Global ischemia induces immediate-early genes encoding zinc finger transcription factors. Journal of Cerebral Blood Flow & Metabolism 16: 557–565.CrossRef
42.
go back to reference Ducruet, A.F., S.A. Sosunov, S.H. Visovatti, D. Petrovic-Djergovic, W.J. Mack, E.J. Connolly, and D.J. Pinsky. 2011. Paradoxical exacerbation of neuronal injury in reperfused stroke despite improved blood flow and reduced inflammation in early growth response-1 gene-deleted mice. Neurological Research 33: 717–725.CrossRefPubMedCentralPubMed Ducruet, A.F., S.A. Sosunov, S.H. Visovatti, D. Petrovic-Djergovic, W.J. Mack, E.J. Connolly, and D.J. Pinsky. 2011. Paradoxical exacerbation of neuronal injury in reperfused stroke despite improved blood flow and reduced inflammation in early growth response-1 gene-deleted mice. Neurological Research 33: 717–725.CrossRefPubMedCentralPubMed
43.
go back to reference Tan, C.B., M. Gao, W.R. Xu, X.Y. Yang, X.M. Zhu, and G.H. Du. 2009. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32: 1359–1363.CrossRef Tan, C.B., M. Gao, W.R. Xu, X.Y. Yang, X.M. Zhu, and G.H. Du. 2009. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biological & Pharmaceutical Bulletin 32: 1359–1363.CrossRef
44.
go back to reference Xu, M.C., H.M. Shi, H. Wang, and X.F. Gao. 2013. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Molecular Medicine Reports 8: 147–153.CrossRefPubMed Xu, M.C., H.M. Shi, H. Wang, and X.F. Gao. 2013. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Molecular Medicine Reports 8: 147–153.CrossRefPubMed
45.
go back to reference Shi, K., X. Wang, J. Zhu, G. Cao, K. Zhang, and Z. Su. 2015. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Bioscience, Biotechnology, and Biochemistry 79: 1406–1413.CrossRefPubMed Shi, K., X. Wang, J. Zhu, G. Cao, K. Zhang, and Z. Su. 2015. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Bioscience, Biotechnology, and Biochemistry 79: 1406–1413.CrossRefPubMed
46.
go back to reference Chaitanya, G.V., A. Minagar, and J.S. Alexander. 2014. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia. Cell Communication and Signaling 12: 7.CrossRefPubMedCentralPubMed Chaitanya, G.V., A. Minagar, and J.S. Alexander. 2014. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia. Cell Communication and Signaling 12: 7.CrossRefPubMedCentralPubMed
47.
go back to reference Chaitanya, G.V., W.E. Cromer, S.R. Wells, M.H. Jennings, P.O. Couraud, I.A. Romero, B. Weksler, A. Erdreich-Epstein, J.M. Mathis, A. Minagar, and J.S. Alexander. 2011. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. Journal of Neuroinflammation 8: 162.CrossRefPubMedCentralPubMed Chaitanya, G.V., W.E. Cromer, S.R. Wells, M.H. Jennings, P.O. Couraud, I.A. Romero, B. Weksler, A. Erdreich-Epstein, J.M. Mathis, A. Minagar, and J.S. Alexander. 2011. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. Journal of Neuroinflammation 8: 162.CrossRefPubMedCentralPubMed
48.
go back to reference Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 7: e45763.CrossRefPubMedCentralPubMed Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 7: e45763.CrossRefPubMedCentralPubMed
Metadata
Title
Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside After Cerebral Ischemia
Authors
Wenfang Lai
XiuLi Xie
Xiaoqin Zhang
Yingzheng Wang
Kedan Chu
John Brown
Lidian Chen
Guizhu Hong
Publication date
01-03-2018
Publisher
Springer US
Published in
Inflammation / Issue 2/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0701-7

Other articles of this Issue 2/2018

Inflammation 2/2018 Go to the issue