Skip to main content
Top
Published in: Inflammation 4/2017

01-08-2017 | ORIGINAL ARTICLE

Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis

Authors: Weifan Yin, Song Ouyang, Zhaohui Luo, Qiuming Zeng, Bo Hu, Liqun Xu, Yuan Li, Bo Xiao, Huan Yang

Published in: Inflammation | Issue 4/2017

Login to get access

Abstract

Myasthenia gravis (MG) is a neurological autoimmune disease characterized by fluctuating weakness of certain voluntary muscles. Current treatments for MG are largely directed at suppressing the whole immune system by using immunosuppressants or glucocorticoids and often cause several side effects. The ideal therapeutic methods for MG should suppress aberrant immunoactivation specifically, while retaining normal function of the immune system. In this study, we first produced exosomes from microRNA-146a overexpressing dendritic cells (DCs). Then, we observed suppressive effects of those exosomes in experimental autoimmune myasthenia gravis (EAMG) mice. Results showed that exosomes from microRNA-146a overexpressing DCs expressed decreased levels of CD80 and CD86. In experimental autoimmune MG, exosomes from microRNA-146a overexpressing DCs suppressed ongoing clinical MG in mice and altered T helper cell profiles from Th1/Th17 to Th2/Treg both in serum and spleen, and the therapeutic effects of those exosomes were antigen-specific and partly dose dependent. All the findings provide experimental basis for antigen-specific therapy of MG.
Literature
1.
go back to reference Christadoss, P., J. Lindstrom, S. Munro, and N. Talal. 1985. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. Journal of Neuroimmunology 8: 29–44.CrossRefPubMed Christadoss, P., J. Lindstrom, S. Munro, and N. Talal. 1985. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: Correlated with cellular, humoral and clinical responses. Journal of Neuroimmunology 8: 29–44.CrossRefPubMed
2.
3.
go back to reference Rodgaard, A., F.C. Nielsen, R. Djurup, F. Somnier, and S. Gammeltoft. 1987. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. J Clin. Exp Immunol 67: 82–88. Rodgaard, A., F.C. Nielsen, R. Djurup, F. Somnier, and S. Gammeltoft. 1987. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. J Clin. Exp Immunol 67: 82–88.
4.
go back to reference Christadoss, P., M. Poussin, and C. Deng. 2000. Animal models of myasthenia gravis. Clinical Immunology 94: 75–87.CrossRefPubMed Christadoss, P., M. Poussin, and C. Deng. 2000. Animal models of myasthenia gravis. Clinical Immunology 94: 75–87.CrossRefPubMed
5.
go back to reference Imai, T., S. Suzuki, E. Tsuda, Y. Nagane, H. Murai, M. Masuda, S. Konno, Y. Suzuki, S. Nakane, K. Fujihara, N. Suzuki, and K. Utsugisawa. 2015. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle & Nerve 51: 692–696.CrossRef Imai, T., S. Suzuki, E. Tsuda, Y. Nagane, H. Murai, M. Masuda, S. Konno, Y. Suzuki, S. Nakane, K. Fujihara, N. Suzuki, and K. Utsugisawa. 2015. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle & Nerve 51: 692–696.CrossRef
6.
go back to reference Luo, J., and J. Lindstrom. 2014. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology 193: 5044–5055.CrossRef Luo, J., and J. Lindstrom. 2014. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology 193: 5044–5055.CrossRef
7.
go back to reference Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245–252.CrossRefPubMed Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245–252.CrossRefPubMed
8.
go back to reference Osorio, F., C. Fuentes, M.N. López, F. Salazar-Onfray, and F.E. González. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Frontiers in Immunology 6: 535.CrossRefPubMedPubMedCentral Osorio, F., C. Fuentes, M.N. López, F. Salazar-Onfray, and F.E. González. 2015. Role of dendritic cells in the induction of lymphocyte tolerance. Frontiers in Immunology 6: 535.CrossRefPubMedPubMedCentral
9.
go back to reference Chung, C.Y., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic cells: Cellular mediators for immunological tolerance. Clinical & Developmental Immunology 2013: 972865.CrossRef Chung, C.Y., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic cells: Cellular mediators for immunological tolerance. Clinical & Developmental Immunology 2013: 972865.CrossRef
10.
go back to reference O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews. Immunology 10: 111–122.CrossRefPubMed O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews. Immunology 10: 111–122.CrossRefPubMed
11.
go back to reference Fukaya, T., and Y. Tomari. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Molecular Cell 48: 825–836.CrossRefPubMed Fukaya, T., and Y. Tomari. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Molecular Cell 48: 825–836.CrossRefPubMed
12.
go back to reference Du, J., J. Wang, G. Tan, Z. Cai, L. Zhang, B. Tang, and Z. Wang. 2012. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Medical Oncology 29: 2814–2823.CrossRefPubMed Du, J., J. Wang, G. Tan, Z. Cai, L. Zhang, B. Tang, and Z. Wang. 2012. Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Medical Oncology 29: 2814–2823.CrossRefPubMed
13.
go back to reference Karrich, J.J., L.C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E.W. Taanman-Kueter, M. Nagasawa, E.C. de Jong, C.H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001–3009.CrossRefPubMedPubMedCentral Karrich, J.J., L.C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E.W. Taanman-Kueter, M. Nagasawa, E.C. de Jong, C.H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001–3009.CrossRefPubMedPubMedCentral
14.
go back to reference Park, H., X. Huang, C. Lu, M.S. Cairo, and X. Zhou. 2015. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. The Journal of Biological Chemistry 290: 2831–2841.CrossRefPubMed Park, H., X. Huang, C. Lu, M.S. Cairo, and X. Zhou. 2015. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. The Journal of Biological Chemistry 290: 2831–2841.CrossRefPubMed
15.
go back to reference Chen, T., Z. Li, T. Jing, W. Zhu, J. Ge, X. Zheng, X. Pan, H. Yan, and J. Zhu. 2011. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Letters 585: 567–573.CrossRefPubMed Chen, T., Z. Li, T. Jing, W. Zhu, J. Ge, X. Zheng, X. Pan, H. Yan, and J. Zhu. 2011. MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Letters 585: 567–573.CrossRefPubMed
16.
go back to reference Bodey, B., Jr B. Bodey, S.E. Siegel, and H.E. Kaiser. 2000. Failure of cancer vaccines: The significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676.PubMed Bodey, B., Jr B. Bodey, S.E. Siegel, and H.E. Kaiser. 2000. Failure of cancer vaccines: The significant limitations of this approach to immunotherapy. Anticancer Research 20: 2665–2676.PubMed
17.
go back to reference Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules & Diseases 35: 89.CrossRef Segura, E., S. Amigorena, and C. Théry. 2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules & Diseases 35: 89.CrossRef
18.
go back to reference Yin, W., S. Ouyang, Y. Li, B. Xiao, and H. Yang. 2013. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation 36: 232–240.CrossRefPubMed Yin, W., S. Ouyang, Y. Li, B. Xiao, and H. Yang. 2013. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation 36: 232–240.CrossRefPubMed
19.
go back to reference Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosome and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am Transplantat 6: 1541–1550.CrossRef Pêche, H., K. Renaudin, G. Beriou, E. Merieau, S. Amigorena, and M.C. Cuturi. 2006. Induction of tolerance by exosome and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am Transplantat 6: 1541–1550.CrossRef
20.
go back to reference Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. The Journal of Surgical Research 171: 826–832.CrossRefPubMed Yang, X., S. Meng, H. Jiang, C. Zhu, and W. Wu. 2011. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. The Journal of Surgical Research 171: 826–832.CrossRefPubMed
21.
go back to reference Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.CrossRefPubMed Kim, S.H., N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular Therapy 13: 289–300.CrossRefPubMed
22.
go back to reference Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.CrossRef Kim, S.H., N.R. Bianco, W.J. Shufesky, A.E. Morelli, and P.D. Robbins. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. Journal of Immunology 179: 2242–2249.CrossRef
23.
go back to reference Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.CrossRef Kim, S.H., E.R. Lechman, N. Bianco, R. Menon, A. Keravala, J. Nash, Z. Mi, S.C. Watkins, A. Gambotto, and P.D. Robbins. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. Journal of Immunology 174: 6440–6448.CrossRef
24.
go back to reference Bu, N., H.Q. Wu, G.L. Zhang, S.Q. Zhan, R. Zhang, Q.Y. Fan, Y.L. Li, Y.F. Zhai, and H.W. Ren. 2015. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. Journal of Neuroimmunology 285: 71–75.CrossRefPubMed Bu, N., H.Q. Wu, G.L. Zhang, S.Q. Zhan, R. Zhang, Q.Y. Fan, Y.L. Li, Y.F. Zhai, and H.W. Ren. 2015. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. Journal of Neuroimmunology 285: 71–75.CrossRefPubMed
25.
go back to reference Li, X.L., H. Li, M. Zhang, H. Xu, L.T. Yue, X.X. Zhang, S. Wang, C.C. Wang, Y.B. Li, Y.C. Dou, and R.S. Duan. 2016. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. Journal of Neuroinflammation 13: 8.CrossRefPubMedPubMedCentral Li, X.L., H. Li, M. Zhang, H. Xu, L.T. Yue, X.X. Zhang, S. Wang, C.C. Wang, Y.B. Li, Y.C. Dou, and R.S. Duan. 2016. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. Journal of Neuroinflammation 13: 8.CrossRefPubMedPubMedCentral
26.
go back to reference Min, W.P., R. Gorczynski, X.Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R.M. Suri, and M.S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Journal of Immunology 164: 161–167.CrossRef Min, W.P., R. Gorczynski, X.Y. Huang, M. Kushida, P. Kim, M. Obataki, J. Lei, R.M. Suri, and M.S. Cattral. 2000. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. Journal of Immunology 164: 161–167.CrossRef
27.
go back to reference Doffek, K., X. Chen, S.L. Sugg, and J. Shilyansky. 2011. Phosphatidylserine inhibits NF-κB and p38 MAPK activation in human monocyte derived dendritic cells. Molecular Immunology 48: 1771–1777.CrossRefPubMed Doffek, K., X. Chen, S.L. Sugg, and J. Shilyansky. 2011. Phosphatidylserine inhibits NF-κB and p38 MAPK activation in human monocyte derived dendritic cells. Molecular Immunology 48: 1771–1777.CrossRefPubMed
28.
go back to reference Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol 169:3555–3564. Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol 169:3555–3564.
29.
go back to reference Manavella, P.A., and I. Rubio-Somoza. 2011. Engineering elements for gene silencing: The artificial microRNAs technology. Methods in Molecular Biology 732: 121–123.CrossRefPubMed Manavella, P.A., and I. Rubio-Somoza. 2011. Engineering elements for gene silencing: The artificial microRNAs technology. Methods in Molecular Biology 732: 121–123.CrossRefPubMed
30.
go back to reference Pusic, A.D., K.M. Pusic, B.L. Clayton, and R.P. Kraig. 2014. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. Journal of Neuroimmunology 266: 12–23.CrossRefPubMed Pusic, A.D., K.M. Pusic, B.L. Clayton, and R.P. Kraig. 2014. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. Journal of Neuroimmunology 266: 12–23.CrossRefPubMed
31.
go back to reference Li, X., J.J. Li, J.Y. Yang, D.S. Wan, W. Zhao, W.J. Song, W.M. Li, J.F. Wang, W. Han, Z.C. Zhang, Y. Yu, D.Y. Cao, and K.F. Dou. 2012. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PloS One 7: e44045.CrossRefPubMedPubMedCentral Li, X., J.J. Li, J.Y. Yang, D.S. Wan, W. Zhao, W.J. Song, W.M. Li, J.F. Wang, W. Han, Z.C. Zhang, Y. Yu, D.Y. Cao, and K.F. Dou. 2012. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PloS One 7: e44045.CrossRefPubMedPubMedCentral
32.
go back to reference Hall, B.M. 2015. T cell: Soldiers and spies—The surveillance and control of effector T cells by regulatory T cell. Clinical Journal of the American Society of Nephrology 10 (11): 2050–2064.CrossRefPubMedPubMedCentral Hall, B.M. 2015. T cell: Soldiers and spies—The surveillance and control of effector T cells by regulatory T cell. Clinical Journal of the American Society of Nephrology 10 (11): 2050–2064.CrossRefPubMedPubMedCentral
33.
go back to reference Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72 (2): 146–153.CrossRefPubMed Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 72 (2): 146–153.CrossRefPubMed
34.
go back to reference Xiao, J., F. Zhu, X. Liu, and J. Xiong. 2012. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Molecular Medicine Reports 6 (5): 1035–1039.PubMed Xiao, J., F. Zhu, X. Liu, and J. Xiong. 2012. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Molecular Medicine Reports 6 (5): 1035–1039.PubMed
35.
go back to reference Alexandre, P.B., D.B. Rodrigues, and V. Rodrigues. 2015. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BioMed Research International 2015: 591237.PubMedPubMedCentral Alexandre, P.B., D.B. Rodrigues, and V. Rodrigues. 2015. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BioMed Research International 2015: 591237.PubMedPubMedCentral
36.
go back to reference Pitt, J.M., F. André, S. Amigorena, J.C. Soria, A. Eggermont, G. Kroemer, and L. Zitvogel. 2016. Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation 126 (4): 1224–1232.CrossRefPubMedPubMedCentral Pitt, J.M., F. André, S. Amigorena, J.C. Soria, A. Eggermont, G. Kroemer, and L. Zitvogel. 2016. Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation 126 (4): 1224–1232.CrossRefPubMedPubMedCentral
37.
go back to reference Tan, A., H. De La Peña, and A.M. Seifalian. 2010. The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine 10 (5): 889–900. Tan, A., H. De La Peña, and A.M. Seifalian. 2010. The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine 10 (5): 889–900.
Metadata
Title
Immature Exosomes Derived from MicroRNA-146a Overexpressing Dendritic Cells Act as Antigen-Specific Therapy for Myasthenia Gravis
Authors
Weifan Yin
Song Ouyang
Zhaohui Luo
Qiuming Zeng
Bo Hu
Liqun Xu
Yuan Li
Bo Xiao
Huan Yang
Publication date
01-08-2017
Publisher
Springer US
Published in
Inflammation / Issue 4/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0589-2

Other articles of this Issue 4/2017

Inflammation 4/2017 Go to the issue