Skip to main content
Top
Published in: Inflammation 2/2017

01-04-2017 | ORIGINAL ARTICLE

Tripartite Motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein

Authors: Litao Guo, Weili Dong, Xiaoxiao Fu, Jing Lin, Zhijun Dong, Xiaobo Tan, Tiemin Zhang

Published in: Inflammation | Issue 2/2017

Login to get access

Abstract

Pseudomonas aeruginosa (PA)-induced keratitis is a rapidly progressive ocular infectious disease that often leads to inflammatory epithelial edema, stromal infiltration, tissue destruction, corneal ulceration, and vision loss. In this study, we investigate the role of tripartite motif 8 (TRIM8) in regulating the inflammatory process of PA-induced keratitis. The expression of TRIM8 was increased in mouse corneas and in vitro-cultured macrophages after PA infection. Knockdown of the expression of TRIM8 significantly inhibited the activation of NF-κB signaling and decreased the production of pro-inflammatory cytokines both in vivo and in vitro after infected with PA. Furthermore, we investigated the potential mechanism and we found after PA infection that TRIM8 could promote K63-linked polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1), leading to the activation of TAK1 and enhanced inflammatory responses. Taken together, we demonstrated that TRIM8 has pro-inflammatory effect on PA-induced keratitis and suggest TRIM8 as a potential therapeutic target for keratitis.
Literature
1.
go back to reference Liesegang, T.J. 1997. Contact lens-related microbial keratitis: part I: epidemiology. Cornea 16: 125–131.PubMed Liesegang, T.J. 1997. Contact lens-related microbial keratitis: part I: epidemiology. Cornea 16: 125–131.PubMed
2.
go back to reference Hazlett, L.D. 2004. Corneal response to Pseudomonas aeruginosa infection. Progress in Retinal and Eye Research 23: 1–30.CrossRefPubMed Hazlett, L.D. 2004. Corneal response to Pseudomonas aeruginosa infection. Progress in Retinal and Eye Research 23: 1–30.CrossRefPubMed
3.
go back to reference Yildiz, E.H., S. Airiani, K.M. Hammersmith, C.J. Rapuano, P.R. Laibson, A.S. Virdi, et al. 2012. Trends in contact lens-related corneal ulcers at a tertiary referral center. Cornea 31: 1097–1102.CrossRefPubMed Yildiz, E.H., S. Airiani, K.M. Hammersmith, C.J. Rapuano, P.R. Laibson, A.S. Virdi, et al. 2012. Trends in contact lens-related corneal ulcers at a tertiary referral center. Cornea 31: 1097–1102.CrossRefPubMed
4.
go back to reference Engel, L.S., J.M. Hill, J.M. Moreau, L.C. Green, J.A. Hobden, and R.J. O’Callaghan. 1998. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Investigative Ophthalmology & Visual Science 39: 662–665. Engel, L.S., J.M. Hill, J.M. Moreau, L.C. Green, J.A. Hobden, and R.J. O’Callaghan. 1998. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Investigative Ophthalmology & Visual Science 39: 662–665.
5.
go back to reference Kernacki, K.A., J.A. Hobden, L.D. Hazlett, R. Fridman, and R.S. Berk. 1995. In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. Investigative Ophthalmology & Visual Science 36: 1371–1378. Kernacki, K.A., J.A. Hobden, L.D. Hazlett, R. Fridman, and R.S. Berk. 1995. In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. Investigative Ophthalmology & Visual Science 36: 1371–1378.
6.
go back to reference Steuhl, K.P., G. Doring, A. Henni, H.J. Thiel, and K. Botzenhart. 1987. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Investigative Ophthalmology & Visual Science 28: 1559–1568. Steuhl, K.P., G. Doring, A. Henni, H.J. Thiel, and K. Botzenhart. 1987. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Investigative Ophthalmology & Visual Science 28: 1559–1568.
7.
go back to reference Steuhl, K.P., G. Doring, and H.J. Thiel. 1989. The significance of bacterial and host factors in corneal infections caused by Pseudomonas aeruginosa. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 86: 283–286. Steuhl, K.P., G. Doring, and H.J. Thiel. 1989. The significance of bacterial and host factors in corneal infections caused by Pseudomonas aeruginosa. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 86: 283–286.
8.
go back to reference Kernacki, K.A., R.P. Barrett, J.A. Hobden, and L.D. Hazlett. 2000. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear neutrophil influx in ocular bacterial infection. Journal of Immunology (Baltimore, Md.: 1950) 164: 1037–1045.CrossRef Kernacki, K.A., R.P. Barrett, J.A. Hobden, and L.D. Hazlett. 2000. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear neutrophil influx in ocular bacterial infection. Journal of Immunology (Baltimore, Md.: 1950) 164: 1037–1045.CrossRef
9.
go back to reference Rudner, X.L., K.A. Kernacki, R.P. Barrett, and L.D. Hazlett. 2000. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. Journal of Immunology (Baltimore, Md.: 1950) 164: 6576–6582.CrossRef Rudner, X.L., K.A. Kernacki, R.P. Barrett, and L.D. Hazlett. 2000. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. Journal of Immunology (Baltimore, Md.: 1950) 164: 6576–6582.CrossRef
10.
go back to reference Thakur, A., M. Xue, F. Stapleton, A.R. Lloyd, D. Wakefield, and M.D. Willcox. 2002. Balance of pro- and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infection and Immunity 70: 2187–2197.CrossRefPubMedPubMedCentral Thakur, A., M. Xue, F. Stapleton, A.R. Lloyd, D. Wakefield, and M.D. Willcox. 2002. Balance of pro- and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infection and Immunity 70: 2187–2197.CrossRefPubMedPubMedCentral
11.
go back to reference Xue, M.L., A. Thakur, M.D. Willcox, H. Zhu, A.R. Lloyd, and D. Wakefield. 2003. Role and regulation of CXC-chemokines in acute experimental keratitis. Experimental Eye Research 76: 221–231.CrossRefPubMed Xue, M.L., A. Thakur, M.D. Willcox, H. Zhu, A.R. Lloyd, and D. Wakefield. 2003. Role and regulation of CXC-chemokines in acute experimental keratitis. Experimental Eye Research 76: 221–231.CrossRefPubMed
12.
go back to reference Licht, R.W. 2012. Lithium: still a major option in the management of bipolar disorder. CNS Neuroscience & Therapeutics 18: 219–226.CrossRef Licht, R.W. 2012. Lithium: still a major option in the management of bipolar disorder. CNS Neuroscience & Therapeutics 18: 219–226.CrossRef
13.
go back to reference Machado-Vieira, R., H.K. Manji, and C.A. Zarate Jr. 2009. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders 11(Suppl 2): 92–109.CrossRefPubMedPubMedCentral Machado-Vieira, R., H.K. Manji, and C.A. Zarate Jr. 2009. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders 11(Suppl 2): 92–109.CrossRefPubMedPubMedCentral
14.
go back to reference Napolitano, L.M., and G. Meroni. 2012. TRIM family: pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 64: 64–71.CrossRefPubMed Napolitano, L.M., and G. Meroni. 2012. TRIM family: pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 64: 64–71.CrossRefPubMed
15.
go back to reference Lascano, J., P.D. Uchil, W. Mothes, and J. Luban. 2016. TRIM5 retroviral restriction activity correlates with the ability to induce innate immune signaling. Journal of Virology 90: 308–316.CrossRef Lascano, J., P.D. Uchil, W. Mothes, and J. Luban. 2016. TRIM5 retroviral restriction activity correlates with the ability to induce innate immune signaling. Journal of Virology 90: 308–316.CrossRef
16.
go back to reference Wang, Y., D. He, L. Yang, B. Wen, J. Dai, Q. Zhang, et al. 2015. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochemical and Biophysical Research Communications 463: 458–465.CrossRefPubMed Wang, Y., D. He, L. Yang, B. Wen, J. Dai, Q. Zhang, et al. 2015. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochemical and Biophysical Research Communications 463: 458–465.CrossRefPubMed
17.
go back to reference Shibata, M., T. Sato, R. Nukiwa, T. Ariga, and S. Hatakeyama. 2012. TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation. Biochemical and Biophysical Research Communications 423: 104–109.CrossRefPubMed Shibata, M., T. Sato, R. Nukiwa, T. Ariga, and S. Hatakeyama. 2012. TRIM45 negatively regulates NF-kappaB-mediated transcription and suppresses cell proliferation. Biochemical and Biophysical Research Communications 423: 104–109.CrossRefPubMed
18.
go back to reference Mcnab, F.W., R. Rajsbaum, J.P. Stoye, and A. O’Garra. 2011. Tripartite-motif proteins and innate immune regulation. Current Opinion in Immunology 23: 46–56.CrossRefPubMed Mcnab, F.W., R. Rajsbaum, J.P. Stoye, and A. O’Garra. 2011. Tripartite-motif proteins and innate immune regulation. Current Opinion in Immunology 23: 46–56.CrossRefPubMed
19.
go back to reference Vincent, S.R., D.A. Kwasnicka, and P. Fretier. 2000. A novel RING finger-B box-coiled-coil protein, GERP. Biochemical and Biophysical Research Communications 279: 482–486.CrossRefPubMed Vincent, S.R., D.A. Kwasnicka, and P. Fretier. 2000. A novel RING finger-B box-coiled-coil protein, GERP. Biochemical and Biophysical Research Communications 279: 482–486.CrossRefPubMed
20.
go back to reference Toniato, E., X.P. Chen, J. Losman, V. Flati, L. Donahue, and P. Rothman. 2002. TRIM8/GERP RING finger protein interacts with SOCS-1. The Journal of Biological Chemistry 277: 37315–37322.CrossRefPubMed Toniato, E., X.P. Chen, J. Losman, V. Flati, L. Donahue, and P. Rothman. 2002. TRIM8/GERP RING finger protein interacts with SOCS-1. The Journal of Biological Chemistry 277: 37315–37322.CrossRefPubMed
21.
go back to reference Caratozzolo, M.F., L. Micale, M.G. Turturo, S. Cornacchia, C. Fusco, F. Marzano, et al. 2012. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle (Georgetown, Tex.) 11: 511–523.CrossRef Caratozzolo, M.F., L. Micale, M.G. Turturo, S. Cornacchia, C. Fusco, F. Marzano, et al. 2012. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle (Georgetown, Tex.) 11: 511–523.CrossRef
22.
go back to reference Li, Q., J. Yan, A.P. Mao, C. Li, Y. Ran, H.B. Shu, and Y.Y. Wang. 2011. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America 108: 19341–19346.CrossRefPubMedPubMedCentral Li, Q., J. Yan, A.P. Mao, C. Li, Y. Ran, H.B. Shu, and Y.Y. Wang. 2011. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America 108: 19341–19346.CrossRefPubMedPubMedCentral
23.
go back to reference Tomar, D., L. Sripada, P. Prajapati, R. Singh, A.K. Singh, and R. Singh. 2012. Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-kappaB pathway. PloS One 7: e48662.CrossRefPubMedPubMedCentral Tomar, D., L. Sripada, P. Prajapati, R. Singh, A.K. Singh, and R. Singh. 2012. Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-kappaB pathway. PloS One 7: e48662.CrossRefPubMedPubMedCentral
24.
go back to reference Sun, M., M. Zhu, K. Chen, X. Nie, Q. Deng, L.D. Hazlett, et al. 2013. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Investigative Ophthalmology & Visual Science 54: 3451–3462.CrossRef Sun, M., M. Zhu, K. Chen, X. Nie, Q. Deng, L.D. Hazlett, et al. 2013. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Investigative Ophthalmology & Visual Science 54: 3451–3462.CrossRef
25.
go back to reference Hazlett, L.D., S. Mcclellan, B. Kwon, and R. Barrett. 2000. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Investigative Ophthalmology & Visual Science 41: 805–810. Hazlett, L.D., S. Mcclellan, B. Kwon, and R. Barrett. 2000. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Investigative Ophthalmology & Visual Science 41: 805–810.
26.
go back to reference Feterl, M., B.L. Govan, and N. Ketheesan. 2008. The effect of different Burkholderia pseudomallei isolates of varying levels of virulence on toll-like-receptor expression. Transactions of the Royal Society of Tropical Medicine and Hygiene 102(Suppl 1): S82–88.CrossRefPubMed Feterl, M., B.L. Govan, and N. Ketheesan. 2008. The effect of different Burkholderia pseudomallei isolates of varying levels of virulence on toll-like-receptor expression. Transactions of the Royal Society of Tropical Medicine and Hygiene 102(Suppl 1): S82–88.CrossRefPubMed
27.
go back to reference Chen, K., L. Yin, X. Nie, Q. Deng, Y. Wu, M. Zhu, et al. 2013. β-Catenin promotes host resistance against Pseudomonas aeruginosa keratitis. The Journal of Infection 67: 584–594.CrossRefPubMed Chen, K., L. Yin, X. Nie, Q. Deng, Y. Wu, M. Zhu, et al. 2013. β-Catenin promotes host resistance against Pseudomonas aeruginosa keratitis. The Journal of Infection 67: 584–594.CrossRefPubMed
28.
go back to reference Karin, M., and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nature Immunology 3: 221–227.CrossRefPubMed Karin, M., and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nature Immunology 3: 221–227.CrossRefPubMed
29.
go back to reference Sun, Y., M. Karmakar, S. Roy, R.T. Ramadan, S.R. Williams, S. Howell, et al. 2010. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. Journal of Immunology (Baltimore, Md.: 1950) 185: 4272–4283.CrossRef Sun, Y., M. Karmakar, S. Roy, R.T. Ramadan, S.R. Williams, S. Howell, et al. 2010. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. Journal of Immunology (Baltimore, Md.: 1950) 185: 4272–4283.CrossRef
30.
go back to reference Fan, Y., Y. Yu, Y. Shi, W. Sun, M. Xie, N. Ge, et al. 2010. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. The Journal of Biological Chemistry 285: 5347–5360.CrossRefPubMed Fan, Y., Y. Yu, Y. Shi, W. Sun, M. Xie, N. Ge, et al. 2010. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. The Journal of Biological Chemistry 285: 5347–5360.CrossRefPubMed
31.
go back to reference Stapleton, F., and N. Carnt. 2012. Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 26: 185–193.CrossRefPubMed Stapleton, F., and N. Carnt. 2012. Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 26: 185–193.CrossRefPubMed
32.
go back to reference Caratozzolo, M.F., A. Valletti, M. Gigante, I. Aiello, F. Mastropasqua, F. Marzano, et al. 2014. TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 5: 7446–7457.CrossRefPubMedPubMedCentral Caratozzolo, M.F., A. Valletti, M. Gigante, I. Aiello, F. Mastropasqua, F. Marzano, et al. 2014. TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 5: 7446–7457.CrossRefPubMedPubMedCentral
33.
go back to reference Micale, L., C. Fusco, A. Fontana, R. Barbano, B. Augello, P. De Nittis, et al. 2015. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 15: 470.CrossRefPubMedPubMedCentral Micale, L., C. Fusco, A. Fontana, R. Barbano, B. Augello, P. De Nittis, et al. 2015. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 15: 470.CrossRefPubMedPubMedCentral
35.
go back to reference Adhikari, A., and Z.J. Chen. 2009. Diversity of polyubiquitin chains. Developmental Cell 16: 485–486.CrossRefPubMed Adhikari, A., and Z.J. Chen. 2009. Diversity of polyubiquitin chains. Developmental Cell 16: 485–486.CrossRefPubMed
36.
go back to reference Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. Von Bulow, N. Schuster, et al. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10: 1199–1207.CrossRefPubMed Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. Von Bulow, N. Schuster, et al. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10: 1199–1207.CrossRefPubMed
37.
go back to reference Mao, R., Y. Fan, Y. Mou, H. Zhang, S. Fu, and J. Yang. 2011. TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation. Cellular Signalling 23: 222–227.CrossRefPubMed Mao, R., Y. Fan, Y. Mou, H. Zhang, S. Fu, and J. Yang. 2011. TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation. Cellular Signalling 23: 222–227.CrossRefPubMed
38.
go back to reference Fan, Y., Y. Yu, R. Mao, H. Zhang, and J. Yang. 2011. TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-kappaB activation. Cellular Signalling 23: 660–665.CrossRefPubMed Fan, Y., Y. Yu, R. Mao, H. Zhang, and J. Yang. 2011. TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-kappaB activation. Cellular Signalling 23: 660–665.CrossRefPubMed
39.
go back to reference Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, et al. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.CrossRefPubMedPubMedCentral Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, et al. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.CrossRefPubMedPubMedCentral
Metadata
Title
Tripartite Motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein
Authors
Litao Guo
Weili Dong
Xiaoxiao Fu
Jing Lin
Zhijun Dong
Xiaobo Tan
Tiemin Zhang
Publication date
01-04-2017
Publisher
Springer US
Published in
Inflammation / Issue 2/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0491-3

Other articles of this Issue 2/2017

Inflammation 2/2017 Go to the issue