Skip to main content
Top
Published in: Inflammation 1/2017

01-02-2017 | ORIGINAL ARTICLE

NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells

Authors: Jae-Won Lee, Ji-Won Park, Ok-Kyoung Kwon, Hee Jae Lee, Hye Gwang Jeong, Jae-Hong Kim, Sei-Ryang Oh, Kyoung-Seop Ahn

Published in: Inflammation | Issue 1/2017

Login to get access

Abstract

Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
Literature
2.
go back to reference Vestbo, J., S.S. Hurd, A.G. Agusti, P.W. Jones, C. Vogelmeier, A. Anzueto, P.J. Barnes, L.M. Fabbri, F.J. Martinez, M. Nishimura, R.A. Stockley, D.D. Sin, and R. Rodriguez-Roisin. 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 187: 347–365. doi:10.1164/rccm.201204-0596PP.CrossRefPubMed Vestbo, J., S.S. Hurd, A.G. Agusti, P.W. Jones, C. Vogelmeier, A. Anzueto, P.J. Barnes, L.M. Fabbri, F.J. Martinez, M. Nishimura, R.A. Stockley, D.D. Sin, and R. Rodriguez-Roisin. 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 187: 347–365. doi:10.​1164/​rccm.​201204-0596PP.CrossRefPubMed
3.
go back to reference Shin, I.S., N.R. Shin, J.W. Park, C.M. Jeon, J.M. Hong, O.K. Kwon, J.S. Kim, I.C. Lee, J.C. Kim, S.R. Oh, and K.S. Ahn. 2015. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. Journal of Pineal Research 58: 50–60. doi:10.1111/jpi.12192.CrossRefPubMed Shin, I.S., N.R. Shin, J.W. Park, C.M. Jeon, J.M. Hong, O.K. Kwon, J.S. Kim, I.C. Lee, J.C. Kim, S.R. Oh, and K.S. Ahn. 2015. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. Journal of Pineal Research 58: 50–60. doi:10.​1111/​jpi.​12192.CrossRefPubMed
4.
go back to reference Chapman, K.R., D.M. Mannino, J.B. Soriano, P.A. Vermeire, A.S. Buist, M.J. Thun, C. Connell, A. Jemal, T.A. Lee, M. Miravitlles, S. Aldington, and R. Beasley. 2006. Epidemiology and costs of chronic obstructive pulmonary disease. European Respiratory Journal 27: 188–207. doi:10.1183/09031936.06.00024505.CrossRefPubMed Chapman, K.R., D.M. Mannino, J.B. Soriano, P.A. Vermeire, A.S. Buist, M.J. Thun, C. Connell, A. Jemal, T.A. Lee, M. Miravitlles, S. Aldington, and R. Beasley. 2006. Epidemiology and costs of chronic obstructive pulmonary disease. European Respiratory Journal 27: 188–207. doi:10.​1183/​09031936.​06.​00024505.CrossRefPubMed
6.
go back to reference Gao, W., C. Yuan, J. Zhang, L. Li, L. Yu, C.H. Wiegman, P.J. Barnes, I.M. Adcock, M. Huang, and X. Yao. 2015. Klotho expression is reduced in COPD airway epithelial cells: Effects on inflammation and oxidant injury. Clinical Science (London) 129: 1011–1023. doi:10.1042/CS20150273.CrossRef Gao, W., C. Yuan, J. Zhang, L. Li, L. Yu, C.H. Wiegman, P.J. Barnes, I.M. Adcock, M. Huang, and X. Yao. 2015. Klotho expression is reduced in COPD airway epithelial cells: Effects on inflammation and oxidant injury. Clinical Science (London) 129: 1011–1023. doi:10.​1042/​CS20150273.CrossRef
7.
go back to reference Ehre, C., E.N. Worthington, R.M. Liesman, B.R. Grubb, D. Barbier, W.K. O’Neal, J.M. Sallenave, R.J. Pickles, and R.C. Boucher. 2012. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proceedings of the National Academy of Sciences of the United States of America 109: 16528–16533. doi:10.1073/pnas.1206552109.CrossRefPubMedPubMedCentral Ehre, C., E.N. Worthington, R.M. Liesman, B.R. Grubb, D. Barbier, W.K. O’Neal, J.M. Sallenave, R.J. Pickles, and R.C. Boucher. 2012. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proceedings of the National Academy of Sciences of the United States of America 109: 16528–16533. doi:10.​1073/​pnas.​1206552109.CrossRefPubMedPubMedCentral
8.
go back to reference Caramori, G., C. Di Gregorio, I. Carlstedt, P. Casolari, I. Guzzinati, I.M. Adcock, P.J. Barnes, A. Ciaccia, G. Cavallesco, K.F. Chung, and A. Papi. 2004. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 45: 477–484. doi:10.1111/j.1365-2559.2004.01952.x.CrossRefPubMed Caramori, G., C. Di Gregorio, I. Carlstedt, P. Casolari, I. Guzzinati, I.M. Adcock, P.J. Barnes, A. Ciaccia, G. Cavallesco, K.F. Chung, and A. Papi. 2004. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology 45: 477–484. doi:10.​1111/​j.​1365-2559.​2004.​01952.​x.CrossRefPubMed
9.
go back to reference Shin, I.S., J.W. Park, N.R. Shin, C.M. Jeon, O.K. Kwon, M.Y. Lee, H.S. Kim, J.C. Kim, S.R. Oh, and K.S. Ahn. 2014. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. Journal of Pineal Research 56: 398–407. doi:10.1111/jpi.12127.CrossRefPubMed Shin, I.S., J.W. Park, N.R. Shin, C.M. Jeon, O.K. Kwon, M.Y. Lee, H.S. Kim, J.C. Kim, S.R. Oh, and K.S. Ahn. 2014. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. Journal of Pineal Research 56: 398–407. doi:10.​1111/​jpi.​12127.CrossRefPubMed
10.
go back to reference Papakonstantinou, E., G. Karakiulakis, S. Batzios, S. Savic, M. Roth, M. Tamm, and D. Stolz. 2015. Acute exacerbations of COPD are associated with significant activation of matrix metalloproteinase 9 irrespectively of airway obstruction, emphysema and infection. Respiratory Research 16: 78. doi:10.1186/s12931-015-0240-4.CrossRefPubMedPubMedCentral Papakonstantinou, E., G. Karakiulakis, S. Batzios, S. Savic, M. Roth, M. Tamm, and D. Stolz. 2015. Acute exacerbations of COPD are associated with significant activation of matrix metalloproteinase 9 irrespectively of airway obstruction, emphysema and infection. Respiratory Research 16: 78. doi:10.​1186/​s12931-015-0240-4.CrossRefPubMedPubMedCentral
11.
go back to reference Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A.O. Egiza. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.1139/bcb-2015-0073. Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A.O. Egiza. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.​1139/​bcb-2015-0073.
12.
go back to reference Chung, K.F. 2001. Cytokines in chronic obstructive pulmonary disease. The European Respiratory Journal Supplement 34: 50s–59s.CrossRefPubMed Chung, K.F. 2001. Cytokines in chronic obstructive pulmonary disease. The European Respiratory Journal Supplement 34: 50s–59s.CrossRefPubMed
13.
go back to reference Tanni, S.E., N.R. Pelegrino, A.Y. Angeleli, C. Correa, and I. Godoy. 2010. Smoking status and tumor necrosis factor-alpha mediated systemic inflammation in COPD patients. Journal of Inflammation (London) 7: 29. doi:10.1186/1476-9255-7-29.CrossRef Tanni, S.E., N.R. Pelegrino, A.Y. Angeleli, C. Correa, and I. Godoy. 2010. Smoking status and tumor necrosis factor-alpha mediated systemic inflammation in COPD patients. Journal of Inflammation (London) 7: 29. doi:10.​1186/​1476-9255-7-29.CrossRef
15.
go back to reference Kraft, M., K.B. Adler, J.L. Ingram, A.L. Crews, T.P. Atkinson, C.B. Cairns, D.C. Krause, and H.W. Chu. 2008. Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma. European Respiratory Journal 31: 43–46. doi:10.1183/09031936.00103307.CrossRefPubMed Kraft, M., K.B. Adler, J.L. Ingram, A.L. Crews, T.P. Atkinson, C.B. Cairns, D.C. Krause, and H.W. Chu. 2008. Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma. European Respiratory Journal 31: 43–46. doi:10.​1183/​09031936.​00103307.CrossRefPubMed
16.
go back to reference Lee, J.W., N.R. Shin, J.W. Park, S.Y. Park, O.K. Kwon, H.S. Lee, J. Hee Kim, H.J. Lee, J. Lee, Z.Y. Zhang, S.R. Oh, and K.S. Ahn. 2015. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. Journal of Ethnopharmacology 175: 1–8. doi:10.1016/j.jep.2015.08.056.CrossRefPubMed Lee, J.W., N.R. Shin, J.W. Park, S.Y. Park, O.K. Kwon, H.S. Lee, J. Hee Kim, H.J. Lee, J. Lee, Z.Y. Zhang, S.R. Oh, and K.S. Ahn. 2015. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. Journal of Ethnopharmacology 175: 1–8. doi:10.​1016/​j.​jep.​2015.​08.​056.CrossRefPubMed
17.
go back to reference Nie, Y.C., H. Wu, P.B. Li, Y.L. Luo, C.C. Zhang, J.G. Shen, and W.W. Su. 2012. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 25: 349–356. doi:10.1016/j.pupt.2012.06.004.CrossRef Nie, Y.C., H. Wu, P.B. Li, Y.L. Luo, C.C. Zhang, J.G. Shen, and W.W. Su. 2012. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 25: 349–356. doi:10.​1016/​j.​pupt.​2012.​06.​004.CrossRef
20.
go back to reference Kos, C.H., A.C. Karaplis, J.B. Peng, M.A. Hediger, D. Goltzman, K.S. Mohammad, T.A. Guise, and M.R. Pollak. 2003. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. Journal of Clinical Investigation 111: 1021–1028. doi:10.1172/JCI17416.CrossRefPubMedPubMedCentral Kos, C.H., A.C. Karaplis, J.B. Peng, M.A. Hediger, D. Goltzman, K.S. Mohammad, T.A. Guise, and M.R. Pollak. 2003. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. Journal of Clinical Investigation 111: 1021–1028. doi:10.​1172/​JCI17416.CrossRefPubMedPubMedCentral
21.
go back to reference Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, R.N. Germain, D.L. Kastner, and J.J. Chae. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492: 123–127. doi:10.1038/nature11588.CrossRefPubMedPubMedCentral Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, R.N. Germain, D.L. Kastner, and J.J. Chae. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492: 123–127. doi:10.​1038/​nature11588.CrossRefPubMedPubMedCentral
24.
go back to reference Yarova, P.L., A.L. Stewart, V. Sathish, R.D. Britt Jr., A.P.P.L. Thompson MA, M. Freeman, B. Aravamudan, H. Kita, S.C. Brennan, M. Schepelmann, T. Davies, S. Yung, Z. Cholisoh, E.J. Kidd, W.R. Ford, K.J. Broadley, K. Rietdorf, W. Chang, M.E. Bin Khayat, D.T. Ward, J.P.T.W. Corrigan CJ, P.J. Kemp, C.M. Pabelick, Y.S. Prakash, and D. Riccardi. 2015. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Science Translational Medicine 7: 284ra60. doi:10.1126/scitranslmed.aaa0282.CrossRefPubMedPubMedCentral Yarova, P.L., A.L. Stewart, V. Sathish, R.D. Britt Jr., A.P.P.L. Thompson MA, M. Freeman, B. Aravamudan, H. Kita, S.C. Brennan, M. Schepelmann, T. Davies, S. Yung, Z. Cholisoh, E.J. Kidd, W.R. Ford, K.J. Broadley, K. Rietdorf, W. Chang, M.E. Bin Khayat, D.T. Ward, J.P.T.W. Corrigan CJ, P.J. Kemp, C.M. Pabelick, Y.S. Prakash, and D. Riccardi. 2015. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Science Translational Medicine 7: 284ra60. doi:10.​1126/​scitranslmed.​aaa0282.CrossRefPubMedPubMedCentral
25.
go back to reference Park, J.W., O.K. Kwon, J.H. Kim, S.R. Oh, J.H. Kim, J.H. Paik, B. Marwoto, R. Widjhati, F. Juniarti, D. Irawan, and K.S. Ahn. 2015. Rhododendron album Blume inhibits iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells through the downregulation of NF-kappaB signaling. International Journal of Molecular Medicine 35: 987–994. doi:10.3892/ijmm.2015.2107.PubMed Park, J.W., O.K. Kwon, J.H. Kim, S.R. Oh, J.H. Kim, J.H. Paik, B. Marwoto, R. Widjhati, F. Juniarti, D. Irawan, and K.S. Ahn. 2015. Rhododendron album Blume inhibits iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells through the downregulation of NF-kappaB signaling. International Journal of Molecular Medicine 35: 987–994. doi:10.​3892/​ijmm.​2015.​2107.PubMed
26.
go back to reference Liu, C., D. Weir, P. Busse, N. Yang, Z. Zhou, C. Emala, and X.M. Li. 2015. The flavonoid 7,4′-Dihydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-kappaB, STAT6, and HDAC2. Phytotherapy Research 29: 925–932. doi:10.1002/ptr.5334.CrossRefPubMedPubMedCentral Liu, C., D. Weir, P. Busse, N. Yang, Z. Zhou, C. Emala, and X.M. Li. 2015. The flavonoid 7,4′-Dihydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-kappaB, STAT6, and HDAC2. Phytotherapy Research 29: 925–932. doi:10.​1002/​ptr.​5334.CrossRefPubMedPubMedCentral
27.
go back to reference Caramori, G., P. Casolari, C. Di Gregorio, M. Saetta, S. Baraldo, P. Boschetto, K. Ito, L.M. Fabbri, P.J. Barnes, I.M. Adcock, G. Cavallesco, K.F. Chung, and A. Papi. 2009. MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology 55: 321–331. doi:10.1111/j.1365-2559.2009.03377.x.CrossRefPubMed Caramori, G., P. Casolari, C. Di Gregorio, M. Saetta, S. Baraldo, P. Boschetto, K. Ito, L.M. Fabbri, P.J. Barnes, I.M. Adcock, G. Cavallesco, K.F. Chung, and A. Papi. 2009. MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology 55: 321–331. doi:10.​1111/​j.​1365-2559.​2009.​03377.​x.CrossRefPubMed
28.
go back to reference Cortijo, J., M. Mata, J. Milara, E. Donet, A. Gavalda, M. Miralpeix, and E.J. Morcillo. 2011. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. European Respiratory Journal 37: 244–254. doi:10.1183/09031936.00182009.CrossRefPubMed Cortijo, J., M. Mata, J. Milara, E. Donet, A. Gavalda, M. Miralpeix, and E.J. Morcillo. 2011. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. European Respiratory Journal 37: 244–254. doi:10.​1183/​09031936.​00182009.CrossRefPubMed
29.
go back to reference Park, J.W., I.C. Lee, N.R. Shin, C.M. Jeon, O.K. Kwon, J.W. Ko, J.C. Kim, S.R. Oh, I.S. Shin, and K.S. Ahn. 2015. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 1–8. doi:10.3109/17435390.2015.1078851. Park, J.W., I.C. Lee, N.R. Shin, C.M. Jeon, O.K. Kwon, J.W. Ko, J.C. Kim, S.R. Oh, I.S. Shin, and K.S. Ahn. 2015. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 1–8. doi:10.​3109/​17435390.​2015.​1078851.
30.
go back to reference Ishikawa, N., N. Hattori, N. Kohno, A. Kobayashi, T. Hayamizu, and M. Johnson. 2015. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. International Journal of Chronic Obstructive Pulmonary Disease 10: 185–192. doi:10.2147/COPD.S74557.PubMedPubMedCentral Ishikawa, N., N. Hattori, N. Kohno, A. Kobayashi, T. Hayamizu, and M. Johnson. 2015. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. International Journal of Chronic Obstructive Pulmonary Disease 10: 185–192. doi:10.​2147/​COPD.​S74557.PubMedPubMedCentral
31.
go back to reference Lappalainen, U., J.A. Whitsett, S.E. Wert, J.W. Tichelaar, and K. Bry. 2005. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. American Journal of Respiratory Cell and Molecular Biology 32: 311–318. doi:10.1165/rcmb.2004-0309OC.CrossRefPubMed Lappalainen, U., J.A. Whitsett, S.E. Wert, J.W. Tichelaar, and K. Bry. 2005. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. American Journal of Respiratory Cell and Molecular Biology 32: 311–318. doi:10.​1165/​rcmb.​2004-0309OC.CrossRefPubMed
33.
go back to reference Park, J.W., I.S. Shin, U.H. Ha, J.H. Kim, and K.S. Ahn. 2015. Pathophysiological changes induced by pseudomonas aeruginosa infection are involved in MMP-12 and MMP-13 upregulation in human carcinoma epithelial cells and a pneumonia mouse model. Infection and Immunity. doi:10.1128/IAI.00619-15. Park, J.W., I.S. Shin, U.H. Ha, J.H. Kim, and K.S. Ahn. 2015. Pathophysiological changes induced by pseudomonas aeruginosa infection are involved in MMP-12 and MMP-13 upregulation in human carcinoma epithelial cells and a pneumonia mouse model. Infection and Immunity. doi:10.​1128/​IAI.​00619-15.
34.
35.
go back to reference Binker, M.G., M.J. Binker-Cosen, D. Richards, A.A. Binker-Cosen, S.D. Freedman, and L.I. Cosen-Binker. 2015. Omega-3 PUFA docosahexaenoic acid decreases LPS-stimulated MUC5AC production by altering EGFR-related signaling in NCI-H292 cells. Biochemical and Biophysical Research Communications 463: 1047–1052. doi:10.1016/j.bbrc.2015.06.056.CrossRefPubMed Binker, M.G., M.J. Binker-Cosen, D. Richards, A.A. Binker-Cosen, S.D. Freedman, and L.I. Cosen-Binker. 2015. Omega-3 PUFA docosahexaenoic acid decreases LPS-stimulated MUC5AC production by altering EGFR-related signaling in NCI-H292 cells. Biochemical and Biophysical Research Communications 463: 1047–1052. doi:10.​1016/​j.​bbrc.​2015.​06.​056.CrossRefPubMed
36.
go back to reference Pera, T., A.B. Zuidhof, M. Smit, M.H. Menzen, T. Klein, G. Flik, J. Zaagsma, H. Meurs, and H. Maarsingh. 2014. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. Journal of Pharmacology and Experimental Therapeutics 349: 229–238. doi:10.1124/jpet.113.210138.CrossRefPubMed Pera, T., A.B. Zuidhof, M. Smit, M.H. Menzen, T. Klein, G. Flik, J. Zaagsma, H. Meurs, and H. Maarsingh. 2014. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. Journal of Pharmacology and Experimental Therapeutics 349: 229–238. doi:10.​1124/​jpet.​113.​210138.CrossRefPubMed
37.
go back to reference Yu, Q., X. Chen, X. Fang, Q. Chen, and C. Hu. 2015. Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells. International Journal of Molecular Medicine 35: 1435–1442. doi:10.3892/ijmm.2015.2133.PubMed Yu, Q., X. Chen, X. Fang, Q. Chen, and C. Hu. 2015. Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells. International Journal of Molecular Medicine 35: 1435–1442. doi:10.​3892/​ijmm.​2015.​2133.PubMed
38.
go back to reference Montalbano, A.M., G.D. Albano, G. Anzalone, A. Bonanno, L. Riccobono, C. Di Sano, R. Gagliardo, L. Siena, M.P. Pieper, M. Gjomarkaj, and M. Profita. 2014. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line. European Journal of Pharmacology 736: 35–43. doi:10.1016/j.ejphar.2014.04.022.CrossRefPubMed Montalbano, A.M., G.D. Albano, G. Anzalone, A. Bonanno, L. Riccobono, C. Di Sano, R. Gagliardo, L. Siena, M.P. Pieper, M. Gjomarkaj, and M. Profita. 2014. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line. European Journal of Pharmacology 736: 35–43. doi:10.​1016/​j.​ejphar.​2014.​04.​022.CrossRefPubMed
39.
go back to reference Wang, G., Z. Xu, R. Wang, M. Al-Hijji, J. Salit, Y. Strulovici-Barel, A.E. Tilley, J.G. Mezey, and R.G. Crystal. 2012. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Medical Genomics 5: 21. doi:10.1186/1755-8794-5-21.CrossRefPubMedPubMedCentral Wang, G., Z. Xu, R. Wang, M. Al-Hijji, J. Salit, Y. Strulovici-Barel, A.E. Tilley, J.G. Mezey, and R.G. Crystal. 2012. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Medical Genomics 5: 21. doi:10.​1186/​1755-8794-5-21.CrossRefPubMedPubMedCentral
40.
go back to reference Kanai, K., A. Koarai, Y. Shishikura, H. Sugiura, T. Ichikawa, T. Kikuchi, K. Akamatsu, T. Hirano, M. Nakanishi, K. Matsunaga, Y. Minakata, and M. Ichinose. 2015. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respiratory Investigation 53: 137–148. doi:10.1016/j.resinv.2015.01.007.CrossRefPubMed Kanai, K., A. Koarai, Y. Shishikura, H. Sugiura, T. Ichikawa, T. Kikuchi, K. Akamatsu, T. Hirano, M. Nakanishi, K. Matsunaga, Y. Minakata, and M. Ichinose. 2015. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respiratory Investigation 53: 137–148. doi:10.​1016/​j.​resinv.​2015.​01.​007.CrossRefPubMed
41.
go back to reference Lee, H.J., H.S. Seo, J. Ryu, Y.P. Yoon, S.H. Park, and C.J. Lee. 2015. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulmonary Pharmacology & Therapeutics 31: 117–122. doi:10.1016/j.pupt.2014.09.008.CrossRef Lee, H.J., H.S. Seo, J. Ryu, Y.P. Yoon, S.H. Park, and C.J. Lee. 2015. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulmonary Pharmacology & Therapeutics 31: 117–122. doi:10.​1016/​j.​pupt.​2014.​09.​008.CrossRef
42.
go back to reference Lee, S.U., M.H. Sung, H.W. Ryu, J. Lee, H.S. Kim, H.J. In, K.S. Ahn, H.J. Lee, H.K. Lee, D.H. Shin, Y. Lee, S.T. Hong, and S.R. Oh. 2015. Verproside inhibits TNF-alpha-induced MUC5AC expression through suppression of the TNF-alpha/NF-kappaB pathway in human airway epithelial cells. Cytokine. doi:10.1016/j.cyto.2015.08.262.PubMedCentral Lee, S.U., M.H. Sung, H.W. Ryu, J. Lee, H.S. Kim, H.J. In, K.S. Ahn, H.J. Lee, H.K. Lee, D.H. Shin, Y. Lee, S.T. Hong, and S.R. Oh. 2015. Verproside inhibits TNF-alpha-induced MUC5AC expression through suppression of the TNF-alpha/NF-kappaB pathway in human airway epithelial cells. Cytokine. doi:10.​1016/​j.​cyto.​2015.​08.​262.PubMedCentral
45.
go back to reference Lai, H., and D.F. Rogers. 2010. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23: 219–231. doi:10.1089/jamp.2009.0802.CrossRefPubMed Lai, H., and D.F. Rogers. 2010. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23: 219–231. doi:10.​1089/​jamp.​2009.​0802.CrossRefPubMed
46.
go back to reference Cane, J.L., B. Mallia-Millanes, D.L. Forrester, A.J. Knox, C.E. Bolton, and S.R. Johnson. 2015. Matrix metalloproteinases -8 and -9 in the airways, blood and urine during exacerbations of COPD. Chronic Obstructive Pulmonary Disease 1–10. doi:10.3109/15412555.2015.1043522. Cane, J.L., B. Mallia-Millanes, D.L. Forrester, A.J. Knox, C.E. Bolton, and S.R. Johnson. 2015. Matrix metalloproteinases -8 and -9 in the airways, blood and urine during exacerbations of COPD. Chronic Obstructive Pulmonary Disease 1–10. doi:10.​3109/​15412555.​2015.​1043522.
47.
go back to reference Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A. Osman. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.1139/bcb-2015-0073. Abd El-Fatah, M.F., M.A. Ghazy, M.S. Mostafa, M.M. El-Attar, and A. Osman. 2015. Identification of MMP-9 as a biomarker for detecting progression of chronic obstructive pulmonary disease. Biochemistry and Cell Biology 1–7. doi:10.​1139/​bcb-2015-0073.
48.
go back to reference Higashimoto, Y., Y. Yamagata, S. Taya, T. Iwata, M. Okada, T. Ishiguchi, H. Sato, and H. Itoh. 2008. Systemic inflammation in chronic obstructive pulmonary disease and asthma: Similarities and differences. Respirology 13: 128–133. doi:10.1111/j.1440-1843.2007.01170.x.PubMed Higashimoto, Y., Y. Yamagata, S. Taya, T. Iwata, M. Okada, T. Ishiguchi, H. Sato, and H. Itoh. 2008. Systemic inflammation in chronic obstructive pulmonary disease and asthma: Similarities and differences. Respirology 13: 128–133. doi:10.​1111/​j.​1440-1843.​2007.​01170.​x.PubMed
49.
go back to reference Gan, W.Q., S.F. Man, A. Senthilselvan, and D.D. Sin. 2004. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 59: 574–580.CrossRefPubMedPubMedCentral Gan, W.Q., S.F. Man, A. Senthilselvan, and D.D. Sin. 2004. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 59: 574–580.CrossRefPubMedPubMedCentral
50.
go back to reference Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2015. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation. doi:10.1038/labinvest.2015.101. Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2015. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation. doi:10.​1038/​labinvest.​2015.​101.
51.
52.
go back to reference Liu, W., Y. Liu, Z. Wang, T. Yu, Q. Lu, and H. Chen. 2015. Suppression of MAPK and NF-kappa B pathways by schisandrin B contributes to attenuation of DSS-induced mice model of inflammatory bowel disease. Pharmazie 70: 598–603.PubMed Liu, W., Y. Liu, Z. Wang, T. Yu, Q. Lu, and H. Chen. 2015. Suppression of MAPK and NF-kappa B pathways by schisandrin B contributes to attenuation of DSS-induced mice model of inflammatory bowel disease. Pharmazie 70: 598–603.PubMed
53.
go back to reference Ma, W.J., Y.H. Sun, J.X. Jiang, X.W. Dong, J.Y. Zhou, and Q.M. Xie. 2015. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids 94: 13–19. doi:10.1016/j.plefa.2014.10.006.CrossRefPubMed Ma, W.J., Y.H. Sun, J.X. Jiang, X.W. Dong, J.Y. Zhou, and Q.M. Xie. 2015. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids 94: 13–19. doi:10.​1016/​j.​plefa.​2014.​10.​006.CrossRefPubMed
56.
go back to reference Monzon, M.E., R.M. Forteza, and S.M. Casalino-Matsuda. 2011. MCP-1/CCR2B-dependent loop upregulates MUC5AC and MUC5B in human airway epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology 300: L204–L215. doi:10.1152/ajplung.00292.2010.CrossRefPubMed Monzon, M.E., R.M. Forteza, and S.M. Casalino-Matsuda. 2011. MCP-1/CCR2B-dependent loop upregulates MUC5AC and MUC5B in human airway epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology 300: L204–L215. doi:10.​1152/​ajplung.​00292.​2010.CrossRefPubMed
57.
58.
go back to reference Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2016. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation 96: 218–229. doi:10.1038/labinvest.2015.101.CrossRefPubMed Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2016. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation 96: 218–229. doi:10.​1038/​labinvest.​2015.​101.CrossRefPubMed
59.
go back to reference Atkinson, J.J., B.A. Lutey, Y. Suzuki, H.M. Toennies, D.G. Kelley, D.K. Kobayashi, W.G. Ijem, G. Deslee, C.H. Moore, M.E. Jacobs, S.H. Conradi, D.S. Gierada, R.A. Pierce, T. Betsuyaku, and R.M. Senior. 2011. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. American Journal of Respiratory and Critical Care Medicine 183: 876–884. doi:10.1164/rccm.201005-0718OC.CrossRefPubMed Atkinson, J.J., B.A. Lutey, Y. Suzuki, H.M. Toennies, D.G. Kelley, D.K. Kobayashi, W.G. Ijem, G. Deslee, C.H. Moore, M.E. Jacobs, S.H. Conradi, D.S. Gierada, R.A. Pierce, T. Betsuyaku, and R.M. Senior. 2011. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. American Journal of Respiratory and Critical Care Medicine 183: 876–884. doi:10.​1164/​rccm.​201005-0718OC.CrossRefPubMed
60.
go back to reference Ogata, S., Y. Kubota, S. Satoh, S. Ito, H. Takeuchi, M. Ashizuka, and K. Shirasuna. 2006. Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochemical and Biophysical Research Communications 351: 808–814. doi:10.1016/j.bbrc.2006.10.098.CrossRefPubMed Ogata, S., Y. Kubota, S. Satoh, S. Ito, H. Takeuchi, M. Ashizuka, and K. Shirasuna. 2006. Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochemical and Biophysical Research Communications 351: 808–814. doi:10.​1016/​j.​bbrc.​2006.​10.​098.CrossRefPubMed
62.
go back to reference Lee, J.W., J.H. Kwon, M.S. Lim, H.J. Lee, S.S. Kim, S.Y. Lim, and W. Chun. 2014. 3,4,5-Trihydroxycinnamic acid increases heme-oxygenase-1 (HO-1) and decreases macrophage infiltration in LPS-induced septic kidney. Molecular and Cellular Biochemistry 397: 109–116. doi:10.1007/s11010-014-2177-1.CrossRefPubMed Lee, J.W., J.H. Kwon, M.S. Lim, H.J. Lee, S.S. Kim, S.Y. Lim, and W. Chun. 2014. 3,4,5-Trihydroxycinnamic acid increases heme-oxygenase-1 (HO-1) and decreases macrophage infiltration in LPS-induced septic kidney. Molecular and Cellular Biochemistry 397: 109–116. doi:10.​1007/​s11010-014-2177-1.CrossRefPubMed
63.
go back to reference Shin, I.S., K.S. Ahn, N.R. Shin, H.J. Lee, H.W. Ryu, J.W. Kim, K.Y. Sohn, H.J. Kim, Y.H. Han, and S.R. Oh. 2016. Protective effect of EC-18, a synthetic monoacetyldiglyceride on lung inflammation in a murine model induced by cigarette smoke and lipopolysaccharide. International Immunopharmacology 30: 62–68. doi:10.1016/j.intimp.2015.11.025.CrossRefPubMed Shin, I.S., K.S. Ahn, N.R. Shin, H.J. Lee, H.W. Ryu, J.W. Kim, K.Y. Sohn, H.J. Kim, Y.H. Han, and S.R. Oh. 2016. Protective effect of EC-18, a synthetic monoacetyldiglyceride on lung inflammation in a murine model induced by cigarette smoke and lipopolysaccharide. International Immunopharmacology 30: 62–68. doi:10.​1016/​j.​intimp.​2015.​11.​025.CrossRefPubMed
64.
go back to reference Fujisawa, T., S. Velichko, P. Thai, L.Y. Hung, F. Huang, and R. Wu. 2009. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. Journal of Immunology 183: 6236–6243. doi:10.4049/jimmunol.0900614.CrossRef Fujisawa, T., S. Velichko, P. Thai, L.Y. Hung, F. Huang, and R. Wu. 2009. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. Journal of Immunology 183: 6236–6243. doi:10.​4049/​jimmunol.​0900614.CrossRef
65.
go back to reference Syed, D.N., F. Afaq, M.H. Kweon, N. Hadi, N. Bhatia, V.S. Spiegelman, and H. Mukhtar. 2007. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26: 673–682. doi:10.1038/sj.onc.1209829.CrossRefPubMed Syed, D.N., F. Afaq, M.H. Kweon, N. Hadi, N. Bhatia, V.S. Spiegelman, and H. Mukhtar. 2007. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26: 673–682. doi:10.​1038/​sj.​onc.​1209829.CrossRefPubMed
66.
go back to reference Xue, H., K. Sun, W. Xie, G. Hu, H. Kong, Q. Wang, and H. Wang. 2012. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-a/NF-kB signal and the activities of MMP-2 and MMP-9. Pulmonary Pharmacology & Therapeutics 25: 208–215.CrossRef Xue, H., K. Sun, W. Xie, G. Hu, H. Kong, Q. Wang, and H. Wang. 2012. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-a/NF-kB signal and the activities of MMP-2 and MMP-9. Pulmonary Pharmacology & Therapeutics 25: 208–215.CrossRef
67.
go back to reference Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schoneberg, M. Schaefer, U. Krugel, S. Smajilovic, H. Brauner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3: 1329. doi:10.1038/ncomms2339.CrossRefPubMedPubMedCentral Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schoneberg, M. Schaefer, U. Krugel, S. Smajilovic, H. Brauner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3: 1329. doi:10.​1038/​ncomms2339.CrossRefPubMedPubMedCentral
68.
go back to reference Xi, Y.H., H.Z. Li, W.H. Zhang, L.N. Wang, L. Zhang, Y. Lin, S.Z. Bai, H.X. Li, L.Y. Wu, R. Wang, and C.Q. Xu. 2010. The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Molecular and Cellular Biochemistry 342: 233–240. doi:10.1007/s11010-010-0489-3.CrossRefPubMed Xi, Y.H., H.Z. Li, W.H. Zhang, L.N. Wang, L. Zhang, Y. Lin, S.Z. Bai, H.X. Li, L.Y. Wu, R. Wang, and C.Q. Xu. 2010. The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Molecular and Cellular Biochemistry 342: 233–240. doi:10.​1007/​s11010-010-0489-3.CrossRefPubMed
69.
go back to reference Cifuentes, M., C. Fuentes, N. Tobar, I. Acevedo, E. Villalobos, E. Hugo, N. Ben-Jonathan, and M. Reyes. 2012. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Molecular and Cellular Endocrinology 361: 24–30. doi:10.1016/j.mce.2012.03.006.CrossRefPubMedPubMedCentral Cifuentes, M., C. Fuentes, N. Tobar, I. Acevedo, E. Villalobos, E. Hugo, N. Ben-Jonathan, and M. Reyes. 2012. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Molecular and Cellular Endocrinology 361: 24–30. doi:10.​1016/​j.​mce.​2012.​03.​006.CrossRefPubMedPubMedCentral
Metadata
Title
NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells
Authors
Jae-Won Lee
Ji-Won Park
Ok-Kyoung Kwon
Hee Jae Lee
Hye Gwang Jeong
Jae-Hong Kim
Sei-Ryang Oh
Kyoung-Seop Ahn
Publication date
01-02-2017
Publisher
Springer US
Published in
Inflammation / Issue 1/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0468-2

Other articles of this Issue 1/2017

Inflammation 1/2017 Go to the issue