Skip to main content
Top
Published in: Inflammation 5/2016

01-10-2016 | ORIGINAL ARTICLE

Icariine Restores LPS-Induced Bone Loss by Downregulating miR-34c Level

Authors: Jian Liu, Danqing Li, Xuying Sun, Yuting Wang, Qiangbing Xiao, Anmin Chen

Published in: Inflammation | Issue 5/2016

Login to get access

Abstract

Bacteria-induced inflammatory responses cause excessive bone resorption in chronic inflammatory diseases such as septic arthritis, osteomyelitis, and orthopedic implant failure. Icariine has been reported to facilitate the bone healing and reduce the occurrence of osteoporosis in clinical, moreover, laboratory studies which have proved that Icariine promotes the proliferation and differentiation of osteoblasts in vitro. The present study aimed to evaluate the effects of Icariine on lipopolysaccharide (LPS)-induced bone loss via an osteogenic-in vitro model and to elucidate the underlying molecular mechanisms. Here, we showed that Icariine restored LPS-induced bone loss in a dose-dependent manner without any cytotoxicity even at 100 μM in an osteogenic-in vitro model. Interestingly, Icariine restored the protein expression of Runx2, a key transcription factor for osteogenesis, but had no effect on its mRNA expression level. MiRNA-34c was dramatically upregulated after LPS stimulation; however, Icariine preincubation reversed miRNA-34c level. Western blot analysis showed that overexpression of miR-34c markedly inhibited the expression of osteogenic gene makers such as alkaline phosphatase (ALP), Runx2, OPN, and BMP2. ALP activity analysis and Alizarin Red S staining exhibited that both Icariine-induced osteogenic differentiation and mineral nodule formation were significantly inverted by overexpression of miR-34c. Western blot results also showed that Icariine notably inhibited LPS-induced phosphorylation of JNKs, p38, IkBα, IKKβ, and p65. Taken together, our studies suggested that Icariine restored LPS-induced bone loss by downregulating miR-34c level and suppressing JNKs, p38, and NF-kB pathways, which highlighted the potential use of Icariine as a therapeutic agent in the treatment of bacteria-induced bone loss diseases.
Literature
2.
go back to reference Guo, C., L. Yuan, J.G. Wang, F. Wang, X.K. Yang, F.H. Zhang, J.L. Song, X.Y. Ma, Q. Cheng, and G.H. Song. 2014. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation 37(2): 621–31.CrossRefPubMed Guo, C., L. Yuan, J.G. Wang, F. Wang, X.K. Yang, F.H. Zhang, J.L. Song, X.Y. Ma, Q. Cheng, and G.H. Song. 2014. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation 37(2): 621–31.CrossRefPubMed
3.
go back to reference Bandow, K., A. Maeda, K. Kakimoto, J. Kusuyama, M. Shamoto, T. Ohnishi, and T. Matsuguchi. 2010. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochemical and Biophysical Research Communications 402(4): 755–61.CrossRefPubMed Bandow, K., A. Maeda, K. Kakimoto, J. Kusuyama, M. Shamoto, T. Ohnishi, and T. Matsuguchi. 2010. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochemical and Biophysical Research Communications 402(4): 755–61.CrossRefPubMed
4.
go back to reference Matsuguchi, T., N. Chiba, K. Bandow, K. Kakimoto, A. Masuda, and T. Ohnishi. 2009. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of Bone and Mineral Research 24(3): 398–410.CrossRefPubMed Matsuguchi, T., N. Chiba, K. Bandow, K. Kakimoto, A. Masuda, and T. Ohnishi. 2009. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of Bone and Mineral Research 24(3): 398–410.CrossRefPubMed
5.
go back to reference Qian, G., X. Zhang, L. Lu, X. Wu, S. Li, and J. Meng. 2006. Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocrine Journal 53(1): 87–94.CrossRefPubMed Qian, G., X. Zhang, L. Lu, X. Wu, S. Li, and J. Meng. 2006. Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocrine Journal 53(1): 87–94.CrossRefPubMed
6.
go back to reference Qin, L., G. Zhang, W.Y. Hung, Y. Shi, K. Leung, H.Y. Yeung, and P. Leung. 2005. Phytoestrogen-rich herb formula “XLGB” prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. Journal of Bone and Mineral Metabolism 23(Suppl): 55–61.CrossRefPubMed Qin, L., G. Zhang, W.Y. Hung, Y. Shi, K. Leung, H.Y. Yeung, and P. Leung. 2005. Phytoestrogen-rich herb formula “XLGB” prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. Journal of Bone and Mineral Metabolism 23(Suppl): 55–61.CrossRefPubMed
7.
go back to reference Yin, X.X., Z.Q. Chen, Z.J. Liu, Q.J. Ma, and G.T. Dang. 2007. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chinese Medical Journal 120(3): 204–10.PubMed Yin, X.X., Z.Q. Chen, Z.J. Liu, Q.J. Ma, and G.T. Dang. 2007. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chinese Medical Journal 120(3): 204–10.PubMed
8.
go back to reference Zhou, H., S. Wang, Y. Xue, and N. Shi. 2014. Regulation of the levels of Smad1 and Smad5 in MC3T3-E1 cells by Icariine in vitro. Molecular Medicine Reports 9(2): 590–4.PubMed Zhou, H., S. Wang, Y. Xue, and N. Shi. 2014. Regulation of the levels of Smad1 and Smad5 in MC3T3-E1 cells by Icariine in vitro. Molecular Medicine Reports 9(2): 590–4.PubMed
9.
go back to reference Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281–97.CrossRefPubMed Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281–97.CrossRefPubMed
10.
go back to reference Kim, V.N., J. Han, and M.C. Siomi. 2009. Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology 10(2): 126–39.CrossRefPubMed Kim, V.N., J. Han, and M.C. Siomi. 2009. Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology 10(2): 126–39.CrossRefPubMed
13.
go back to reference Chen, X., S. Gu, B.F. Chen, W.L. Shen, Z. Yin, G.W. Xu, J.J. Hu, T. Zhu, G. Li, C. Wan, H.W. Ouyang, T.L. Lee, and W.Y. Chan. 2015. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53: 239–50.CrossRefPubMed Chen, X., S. Gu, B.F. Chen, W.L. Shen, Z. Yin, G.W. Xu, J.J. Hu, T. Zhu, G. Li, C. Wan, H.W. Ouyang, T.L. Lee, and W.Y. Chan. 2015. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53: 239–50.CrossRefPubMed
14.
go back to reference Hu, Z., Y. Wang, Z. Sun, H. Wang, H. Zhou, L. Zhang, S. Zhang, and X. Cao. 2015. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Scientific Reports 5: 18655.CrossRefPubMedPubMedCentral Hu, Z., Y. Wang, Z. Sun, H. Wang, H. Zhou, L. Zhang, S. Zhang, and X. Cao. 2015. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Scientific Reports 5: 18655.CrossRefPubMedPubMedCentral
15.
go back to reference Kureel, J., M. Dixit, A.M. Tyagi, M.N. Mansoori, K. Srivastava, A. Raghuvanshi, R. Maurya, R. Trivedi, A. Goel, and D. Singh. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death & Disease 5: e1050.CrossRef Kureel, J., M. Dixit, A.M. Tyagi, M.N. Mansoori, K. Srivastava, A. Raghuvanshi, R. Maurya, R. Trivedi, A. Goel, and D. Singh. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death & Disease 5: e1050.CrossRef
16.
go back to reference Li, H., T. Li, J. Fan, L. Fan, S. Wang, X. Weng, Q. Han, and R.C. Zhao. 2015. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation 22(12): 1935–45.CrossRefPubMed Li, H., T. Li, J. Fan, L. Fan, S. Wang, X. Weng, Q. Han, and R.C. Zhao. 2015. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation 22(12): 1935–45.CrossRefPubMed
17.
go back to reference Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, and Y.Z. Chang. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12(3): 343–53.CrossRefPubMedPubMedCentral Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, and Y.Z. Chang. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12(3): 343–53.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang, Y., R.L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2011. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America 108(24): 9863–8.CrossRefPubMedPubMedCentral Zhang, Y., R.L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2011. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America 108(24): 9863–8.CrossRefPubMedPubMedCentral
19.
go back to reference Yang, J., N. Su, X. Du, and L. Chen. 2014. Gene expression patterns in bone following lipopolysaccharide stimulation. Cellular and Molecular Biology Letters 19(4): 611–22.CrossRefPubMed Yang, J., N. Su, X. Du, and L. Chen. 2014. Gene expression patterns in bone following lipopolysaccharide stimulation. Cellular and Molecular Biology Letters 19(4): 611–22.CrossRefPubMed
20.
go back to reference Catuogno, S., L. Cerchia, G. Romano, P. Pognonec, G. Condorelli, and V. de Franciscis. 2013. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32(3): 341–51.CrossRefPubMed Catuogno, S., L. Cerchia, G. Romano, P. Pognonec, G. Condorelli, and V. de Franciscis. 2013. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32(3): 341–51.CrossRefPubMed
21.
go back to reference Hagman, Z., B.S. Haflidadottir, M. Ansari, M. Persson, A. Bjartell, A. Edsjo, and Y. Ceder. 2013. The tumour suppressor miR-34c targets MET in prostate cancer cells. British Journal of Cancer 109(5): 1271–8.CrossRefPubMedPubMedCentral Hagman, Z., B.S. Haflidadottir, M. Ansari, M. Persson, A. Bjartell, A. Edsjo, and Y. Ceder. 2013. The tumour suppressor miR-34c targets MET in prostate cancer cells. British Journal of Cancer 109(5): 1271–8.CrossRefPubMedPubMedCentral
22.
go back to reference Li, Y.Q., X.Y. Ren, Q.M. He, Y.F. Xu, X.R. Tang, Y. Sun, M.S. Zeng, T.B. Kang, N. Liu, and J. Ma. 2015. MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death & Disease 6: e1618.CrossRef Li, Y.Q., X.Y. Ren, Q.M. He, Y.F. Xu, X.R. Tang, Y. Sun, M.S. Zeng, T.B. Kang, N. Liu, and J. Ma. 2015. MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death & Disease 6: e1618.CrossRef
23.
go back to reference Yang, S., W.S. Li, F. Dong, H.M. Sun, B. Wu, J. Tan, W.J. Zou, and D.S. Zhou. 2014. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. Journal of Cellular and Molecular Medicine 18(10): 2092–102.CrossRefPubMedPubMedCentral Yang, S., W.S. Li, F. Dong, H.M. Sun, B. Wu, J. Tan, W.J. Zou, and D.S. Zhou. 2014. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. Journal of Cellular and Molecular Medicine 18(10): 2092–102.CrossRefPubMedPubMedCentral
24.
go back to reference Hu, S., H. Wang, K. Chen, P. Cheng, S. Gao, J. Liu, X. Li, and X. Sun. 2015. MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. Journal of Alzheimer’s Disease 48(3): 673–86.CrossRefPubMed Hu, S., H. Wang, K. Chen, P. Cheng, S. Gao, J. Liu, X. Li, and X. Sun. 2015. MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. Journal of Alzheimer’s Disease 48(3): 673–86.CrossRefPubMed
25.
go back to reference Zovoilis, A., H.Y. Agbemenyah, R.C. Agis-Balboa, R.M. Stilling, D. Edbauer, P. Rao, L. Farinelli, I. Delalle, A. Schmitt, P. Falkai, S. Bahari-Javan, S. Burkhardt, F. Sananbenesi, and A. Fischer. 2011. microRNA-34c is a novel target to treat dementias. The EMBO Journal 30(20): 4299–308.CrossRefPubMedPubMedCentral Zovoilis, A., H.Y. Agbemenyah, R.C. Agis-Balboa, R.M. Stilling, D. Edbauer, P. Rao, L. Farinelli, I. Delalle, A. Schmitt, P. Falkai, S. Bahari-Javan, S. Burkhardt, F. Sananbenesi, and A. Fischer. 2011. microRNA-34c is a novel target to treat dementias. The EMBO Journal 30(20): 4299–308.CrossRefPubMedPubMedCentral
26.
go back to reference Zhang, Y., R.L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2012. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. Journal of Biological Chemistry 287(26): 21926–35.CrossRefPubMedPubMedCentral Zhang, Y., R.L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2012. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. Journal of Biological Chemistry 287(26): 21926–35.CrossRefPubMedPubMedCentral
Metadata
Title
Icariine Restores LPS-Induced Bone Loss by Downregulating miR-34c Level
Authors
Jian Liu
Danqing Li
Xuying Sun
Yuting Wang
Qiangbing Xiao
Anmin Chen
Publication date
01-10-2016
Publisher
Springer US
Published in
Inflammation / Issue 5/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0411-6

Other articles of this Issue 5/2016

Inflammation 5/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.