Skip to main content
Top
Published in: Inflammation 5/2016

01-10-2016 | ORIGINAL ARTICLE

Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype

Authors: Michelle Seif, Anja Philippi, Frank Breinig, Alexandra K. Kiemer, Jessica Hoppstädter

Published in: Inflammation | Issue 5/2016

Login to get access

Abstract

Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.
Literature
2.
go back to reference Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi:10.1038/ni.1990.CrossRefPubMed Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi:10.​1038/​ni.​1990.CrossRefPubMed
3.
go back to reference Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi:10.1189/jlb.0105015.Journal.CrossRefPubMed Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi:10.​1189/​jlb.​0105015.​Journal.CrossRefPubMed
6.
go back to reference Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi:10.1038/mi.2014.65.CrossRefPubMed Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi:10.​1038/​mi.​2014.​65.CrossRefPubMed
7.
go back to reference Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi:10.1002/pmic.201300508.CrossRefPubMed Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi:10.​1002/​pmic.​201300508.CrossRefPubMed
8.
go back to reference De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi:10.1155/2015/605450. De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi:10.​1155/​2015/​605450.
10.
11.
go back to reference Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi:10.4049/jimmunol.1501158. Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi:10.​4049/​jimmunol.​1501158.
12.
go back to reference Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi:10.1371/journal.pone.0060086. Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi:10.​1371/​journal.​pone.​0060086.
13.
go back to reference Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6. Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6.
14.
go back to reference Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi:10.1186/1465-9921-11-124. Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi:10.​1186/​1465-9921-11-124.
15.
go back to reference Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi:10.1371/journal.pone.0042656. Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi:10.​1371/​journal.​pone.​0042656.
17.
go back to reference Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi:10.1016/j.cellsig.2003.08.009.CrossRefPubMed Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi:10.​1016/​j.​cellsig.​2003.​08.​009.CrossRefPubMed
18.
21.
go back to reference Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi:10.1186/1479-5876-9-216. Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi:10.​1186/​1479-5876-9-216.
22.
go back to reference Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi:10.1002/eji.200737042.CrossRefPubMed Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi:10.​1002/​eji.​200737042.CrossRefPubMed
23.
go back to reference Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi:10.4049/jimmunol.177.10.7303.CrossRef Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi:10.​4049/​jimmunol.​177.​10.​7303.CrossRef
24.
go back to reference Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197. Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197.
25.
go back to reference Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi:10.1182/blood-2002-02-0538.CrossRefPubMed Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi:10.​1182/​blood-2002-02-0538.CrossRefPubMed
26.
go back to reference Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi:10.4049/jimmunol.1401722.CrossRef Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi:10.​4049/​jimmunol.​1401722.CrossRef
27.
go back to reference Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi:10.4049/jimmunol.1403207.CrossRef Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi:10.​4049/​jimmunol.​1403207.CrossRef
30.
go back to reference \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi:10.1371/journal.pone.0078045.CrossRef \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi:10.​1371/​journal.​pone.​0078045.CrossRef
31.
go back to reference Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269. Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269.
32.
go back to reference Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi:10.1016/j.cellimm.2013.01.010.CrossRefPubMed Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi:10.​1016/​j.​cellimm.​2013.​01.​010.CrossRefPubMed
33.
go back to reference Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi:10.1016/j.jim.2011.10.013.CrossRefPubMed Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi:10.​1016/​j.​jim.​2011.​10.​013.CrossRefPubMed
34.
go back to reference Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.PubMed Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.PubMed
35.
go back to reference Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi:10.1189/jlb.1202608.http. Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi:10.​1189/​jlb.​1202608.​http.
36.
go back to reference Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi:10.1016/j.vaccine.2011.07.141.CrossRef Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi:10.​1016/​j.​vaccine.​2011.​07.​141.CrossRef
38.
go back to reference Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi:10.4049/jimmunol.177.7.4679.CrossRef Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi:10.​4049/​jimmunol.​177.​7.​4679.CrossRef
41.
go back to reference Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi:10.1007/s00262-013-1505-8.CrossRef Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi:10.​1007/​s00262-013-1505-8.CrossRef
42.
go back to reference Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi:10.1371/journal.pone.0120201.CrossRef Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi:10.​1371/​journal.​pone.​0120201.CrossRef
43.
go back to reference Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi:10.1038/gt.2015.77.CrossRefPubMed Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi:10.​1038/​gt.​2015.​77.CrossRefPubMed
45.
Metadata
Title
Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype
Authors
Michelle Seif
Anja Philippi
Frank Breinig
Alexandra K. Kiemer
Jessica Hoppstädter
Publication date
01-10-2016
Publisher
Springer US
Published in
Inflammation / Issue 5/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0404-5

Other articles of this Issue 5/2016

Inflammation 5/2016 Go to the issue