Skip to main content
Top
Published in: Inflammation 3/2016

01-06-2016 | ORIGINAL ARTICLE

Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells

Authors: Hang Lei, Quan Wen, Hui Li, Shaohui Du, Jing-jing Wu, Jing Chen, Haiyuan Huang, Dongfeng Chen, Yiwei Li, Saixia Zhang, Jianhong Zhou, Rudong Deng, Qinglin Yang

Published in: Inflammation | Issue 3/2016

Login to get access

Abstract

Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2′-hydroxy-4′-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goodwin, Graham H., Clive Sanders, and Ernest W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38: 14–19.CrossRefPubMed Goodwin, Graham H., Clive Sanders, and Ernest W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry 38: 14–19.CrossRefPubMed
2.
go back to reference Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K.R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P.E. Molina, N.N. Abumrad, A. Sama, and K.J. Tracey. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.CrossRefPubMed
3.
go back to reference Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev Immunol 5: 331–342.CrossRef Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev Immunol 5: 331–342.CrossRef
4.
5.
go back to reference Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.CrossRefPubMed
6.
go back to reference Li, M., D.F. Carpio, Y. Zheng, P. Bruzzo, V. Singh, F. Ouaaz, R.M. Medzhitov, and A.A. Beg. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166: 7128–7135.CrossRef Li, M., D.F. Carpio, Y. Zheng, P. Bruzzo, V. Singh, F. Ouaaz, R.M. Medzhitov, and A.A. Beg. 2001. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. Journal of Immunology 166: 7128–7135.CrossRef
7.
go back to reference Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, and M.E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal 22: 5551–5560.CrossRefPubMedPubMedCentral
9.
go back to reference Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed Sundén-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, and C.J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33: 564–573.CrossRefPubMed
10.
go back to reference Ueno, H., T. Matsuda, S. Hashimoto, F. Amaya, Y. Kitamura, M. Tanaka, A. Kobayashi, I. Maruyama, S. Yamada, N. Hasegawa, J. Soejima, H. Koh, and A. Ishizaka. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.CrossRefPubMed Ueno, H., T. Matsuda, S. Hashimoto, F. Amaya, Y. Kitamura, M. Tanaka, A. Kobayashi, I. Maruyama, S. Yamada, N. Hasegawa, J. Soejima, H. Koh, and A. Ishizaka. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American Journal of Respiratory and Critical Care Medicine 170: 1310–1316.CrossRefPubMed
11.
go back to reference van Zoelen, M. A., Laterre, P. F., van Veen. S, Q., van Till J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and van der Poll, T. 2007. Systemic and local high mobility group box 1 concentrations during severe infection. e 35: 2799–2804. van Zoelen, M. A., Laterre, P. F., van Veen. S, Q., van Till J. W., Wittebole, X., Bresser, P., Tanck, M. W., Dugernier, T., Ishizaka, A., Boermeester, M. A., and van der Poll, T. 2007. Systemic and local high mobility group box 1 concentrations during severe infection. e 35: 2799–2804.
12.
go back to reference Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef Abraham, E., J. Arcaroli, A. Carmody, H. Wang, and K.J. Tracey. 2000. HMG-1 as a mediator of acute lung inflammation. Journal of Immunology 165: 2950–2954.CrossRef
13.
go back to reference Kohno, T., T. Anzai, K. Naito, T. Miyasho, M. Okamoto, H. Yokota, S. Yamada, Y. Maekawa, T. Takahashi, T. Yoshikawa, A. Ishizaka, and S. Ogawa. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research 81: 565–573.CrossRefPubMed Kohno, T., T. Anzai, K. Naito, T. Miyasho, M. Okamoto, H. Yokota, S. Yamada, Y. Maekawa, T. Takahashi, T. Yoshikawa, A. Ishizaka, and S. Ogawa. 2009. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovascular Research 81: 565–573.CrossRefPubMed
14.
go back to reference Kokkola, R., E. Sundberg, A.K. Ulfgren, K. Palmblad, J. Li, H. Wang, L. Ulloa, H. Yang, X.J. Yan, R. Furie, N. Chiorazzi, K.J. Tracey, U. Andersson, and H.E. Harris. 2002. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis and Rheumatism 46: 2598–2603.CrossRefPubMed Kokkola, R., E. Sundberg, A.K. Ulfgren, K. Palmblad, J. Li, H. Wang, L. Ulloa, H. Yang, X.J. Yan, R. Furie, N. Chiorazzi, K.J. Tracey, U. Andersson, and H.E. Harris. 2002. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis and Rheumatism 46: 2598–2603.CrossRefPubMed
15.
go back to reference Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, T. Nakajima, S. Komiya, and I. Maruyama. 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 48: 971–981.CrossRefPubMed Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, T. Nakajima, S. Komiya, and I. Maruyama. 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 48: 971–981.CrossRefPubMed
16.
go back to reference Lamkanfi, M., A. Sarkar, L. Vande Walle, A.C. Vitari, A.O. Amer, M.D. Wewers, K.J. Tracey, T.D. Kanneganti, and V.M. Dixit. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. Journal of Immunology 185: 4385–4392.CrossRef Lamkanfi, M., A. Sarkar, L. Vande Walle, A.C. Vitari, A.O. Amer, M.D. Wewers, K.J. Tracey, T.D. Kanneganti, and V.M. Dixit. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. Journal of Immunology 185: 4385–4392.CrossRef
17.
go back to reference Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, H. Wang, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.CrossRefPubMedPubMedCentral Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H.E. Harris, S.M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C.J. Czura, H. Wang, J. Roth, H.S. Warren, M.P. Fink, M.J. Fenton, U. Andersson, and K.J. Tracey. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the National Academy of Sciences of the United States of America 101: 296–301.CrossRefPubMedPubMedCentral
18.
go back to reference Suda, K., Y. Kitagawa, S. Ozawa, Y. Saikawa, M. Ueda, M. Ebina, S. Yamada, S. Hashimoto, S. Fukata, E. Abraham, I. Maruyama, M. Kitajima, and A. Ishizaka. 2006. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis. World Journal of Surgery 30: 1755–1762.CrossRefPubMed Suda, K., Y. Kitagawa, S. Ozawa, Y. Saikawa, M. Ueda, M. Ebina, S. Yamada, S. Hashimoto, S. Fukata, E. Abraham, I. Maruyama, M. Kitajima, and A. Ishizaka. 2006. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis. World Journal of Surgery 30: 1755–1762.CrossRefPubMed
19.
go back to reference Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27: 672–677.CrossRefPubMed Zhang, L.T., Y.M. Yao, J.Q. Lu, X.J. Yan, Y. Yu, and Z.Y. Sheng. 2007. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27: 672–677.CrossRefPubMed
20.
go back to reference Zhang, T., M. Xia, Q. Zhan, Q. Zhou, G. Lu, and F. An. 2015. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression. Digestive Diseases and Sciences 60: 1991–1999.CrossRefPubMed Zhang, T., M. Xia, Q. Zhan, Q. Zhou, G. Lu, and F. An. 2015. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression. Digestive Diseases and Sciences 60: 1991–1999.CrossRefPubMed
21.
go back to reference Gong, Q., M.J. Chen, C. Wang, H. Nie, Y.X. Zhang, K.G. Shu, and G. Li. 2014. Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice. Sheng Li Xue Bao 66: 619–624. Chinese.PubMed Gong, Q., M.J. Chen, C. Wang, H. Nie, Y.X. Zhang, K.G. Shu, and G. Li. 2014. Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice. Sheng Li Xue Bao 66: 619–624. Chinese.PubMed
22.
go back to reference Wu, A.H., L. He, W. Long, Q. Zhou, S. Zhu, P. Wang, S. Fan, and H. Wang. 2015. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evidence-based Complementary and Alternative Medicine. doi:10.1155/2015/456305. Wu, A.H., L. He, W. Long, Q. Zhou, S. Zhu, P. Wang, S. Fan, and H. Wang. 2015. Novel mechanisms of herbal therapies for inhibiting HMGB1 secretion or action. Evidence-based Complementary and Alternative Medicine. doi:10.​1155/​2015/​456305.
23.
go back to reference Nizamutdinova, I.T., H.M. Oh, Y.N. Min, S.H. Park, M.J. Lee, J.S. Kim, M.H. Yean, S.S. Kang, Y.S. Kim, K.C. Chang, and H.J. Kim. 2007. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. International Immunopharmacology 7: 343–350.CrossRefPubMed Nizamutdinova, I.T., H.M. Oh, Y.N. Min, S.H. Park, M.J. Lee, J.S. Kim, M.H. Yean, S.S. Kang, Y.S. Kim, K.C. Chang, and H.J. Kim. 2007. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. International Immunopharmacology 7: 343–350.CrossRefPubMed
24.
go back to reference Himaya, S.W., B. Ryu, Z.J. Qian, and S.K. Kim. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicology In Vitro 26: 878–887.CrossRefPubMed Himaya, S.W., B. Ryu, Z.J. Qian, and S.K. Kim. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicology In Vitro 26: 878–887.CrossRefPubMed
25.
go back to reference Wu, J., X. Xue, B. Zhang, W. Jiang, H. Cao, R. Wang, D. Sun, and R. Guo. 2016. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chemico-Biological Interactions 244: 1–8.CrossRefPubMed Wu, J., X. Xue, B. Zhang, W. Jiang, H. Cao, R. Wang, D. Sun, and R. Guo. 2016. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chemico-Biological Interactions 244: 1–8.CrossRefPubMed
26.
go back to reference Zhang, L., L. Tao, T. Shi, F. Zhang, X. Sheng, Y. Cao, S. Zheng, A. Wang, W. Qian, L. Jiang, and Y. Lu. 2015. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67: 778–788.CrossRefPubMed Zhang, L., L. Tao, T. Shi, F. Zhang, X. Sheng, Y. Cao, S. Zheng, A. Wang, W. Qian, L. Jiang, and Y. Lu. 2015. Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67: 778–788.CrossRefPubMed
27.
go back to reference Jin, X., J. Wang, Z.M. Xia, C.H. Shang, Q.L. Chao, Y.R. Liu, H.Y. Fan, D.Q. Chen, F. Qiu, and F. Zhao. 2016. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation 39: 434–446.CrossRefPubMed Jin, X., J. Wang, Z.M. Xia, C.H. Shang, Q.L. Chao, Y.R. Liu, H.Y. Fan, D.Q. Chen, F. Qiu, and F. Zhao. 2016. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation 39: 434–446.CrossRefPubMed
28.
go back to reference Chou, T.C. 2003. Anti-inflammatory and analgesic effects of Paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.CrossRefPubMedPubMedCentral Chou, T.C. 2003. Anti-inflammatory and analgesic effects of Paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139: 1146–1152.CrossRefPubMedPubMedCentral
29.
go back to reference Fu, P. K., Wu, C. L., Tsai, T. H., and Hsieh, C. L., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 2012: Doi: 10.1155/2012/837513 Fu, P. K., Wu, C. L., Tsai, T. H., and Hsieh, C. L., 2012. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid Based Complement Alternat Med. 2012: Doi: 10.1155/2012/837513
30.
go back to reference Wang, Y.Q., M. Dai, J.C. Zhong, and D.K. Yin. 2012. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biological and Pharmaceutical Bulletin 35: 767–772.CrossRefPubMed Wang, Y.Q., M. Dai, J.C. Zhong, and D.K. Yin. 2012. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biological and Pharmaceutical Bulletin 35: 767–772.CrossRefPubMed
31.
go back to reference Huang, H., E.J. Chang, Y. Lee, J.S. Kim, S.S. Kang, and H.H. Kim. 2008. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflammation Research 57: 189–198.CrossRefPubMed Huang, H., E.J. Chang, Y. Lee, J.S. Kim, S.S. Kang, and H.H. Kim. 2008. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflammation Research 57: 189–198.CrossRefPubMed
32.
go back to reference Zhu, S., W. Li, M.F. Ward, A.E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9: 60–72.CrossRefPubMed Zhu, S., W. Li, M.F. Ward, A.E. Sama, and H. Wang. 2010. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflammation & Allergy Drug Targets 9: 60–72.CrossRefPubMed
33.
go back to reference Tu, C.T., Q.Y. Yao, B.L. Xu, and S.C. Zhang. 2012. Curcumin protects against concanavalin a-induced hepatitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1. Inflammation 36: 206–215.CrossRef Tu, C.T., Q.Y. Yao, B.L. Xu, and S.C. Zhang. 2012. Curcumin protects against concanavalin a-induced hepatitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1. Inflammation 36: 206–215.CrossRef
34.
go back to reference Lin, C., H.Y. Lin, J.H. Chen, W.P. Tseng, P.Y. Ko, Y.S. Liu, W.L. Yeh, and D.Y. Lu. 2015. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Sci. 16: 8844–8860. Lin, C., H.Y. Lin, J.H. Chen, W.P. Tseng, P.Y. Ko, Y.S. Liu, W.L. Yeh, and D.Y. Lu. 2015. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Sci. 16: 8844–8860.
35.
go back to reference Kim, D.C., W. Lee, and J.S. Bae. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflammation Research 60: 1161–1168.CrossRefPubMed Kim, D.C., W. Lee, and J.S. Bae. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflammation Research 60: 1161–1168.CrossRefPubMed
36.
go back to reference Kim, T.H., S.K. Ku, and J.S. Bae. 2012. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114: 336–345.CrossRef Kim, T.H., S.K. Ku, and J.S. Bae. 2012. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114: 336–345.CrossRef
37.
go back to reference Yang, E.J., W. Lee, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology 50: 1288–1294.CrossRefPubMed Yang, E.J., W. Lee, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food and Chemical Toxicology 50: 1288–1294.CrossRefPubMed
38.
go back to reference Lee, W., T.H. Kim, S.K. Ku, K.J. Min, H.S. Lee, T.K. Kwon, and J.S. Bae. 2012. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicology and Applied Pharmacology 262: 91–98.CrossRefPubMed Lee, W., T.H. Kim, S.K. Ku, K.J. Min, H.S. Lee, T.K. Kwon, and J.S. Bae. 2012. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicology and Applied Pharmacology 262: 91–98.CrossRefPubMed
39.
go back to reference Lee, W., S.K. Ku, J.W. Bae, and J.S. Bae. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food and Chemical Toxicology 50: 1826–1833.CrossRefPubMed Lee, W., S.K. Ku, J.W. Bae, and J.S. Bae. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food and Chemical Toxicology 50: 1826–1833.CrossRefPubMed
40.
go back to reference Kim, T.H., S.K. Ku, T. Lee, and J.S. Bae. 2012. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 50: 2188–2195.CrossRefPubMed Kim, T.H., S.K. Ku, T. Lee, and J.S. Bae. 2012. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 50: 2188–2195.CrossRefPubMed
41.
go back to reference Mollica, L., F. deMarchis, A. Spitaleri, C. Dallacosta, D. Pennacchini, M. Zamai, A. Agrest, L. Trisciuoglio, G, Musco, and M.E. Bianchi. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry and Biology 14: 431–441.CrossRefPubMed Mollica, L., F. deMarchis, A. Spitaleri, C. Dallacosta, D. Pennacchini, M. Zamai, A. Agrest, L. Trisciuoglio, G, Musco, and M.E. Bianchi. 2007. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry and Biology 14: 431–441.CrossRefPubMed
42.
go back to reference Yamaguchi, H., K. Kidachi, Noshita T. Kamiie, and H. Umetsu. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA Complex. Bioinformation 8: 1147–1153.CrossRefPubMedPubMedCentral Yamaguchi, H., K. Kidachi, Noshita T. Kamiie, and H. Umetsu. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA Complex. Bioinformation 8: 1147–1153.CrossRefPubMedPubMedCentral
43.
go back to reference Li, W., J. Li, A.E. Sama, and H. Wang. 2013. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Molecular Medicine 19: 203–211.CrossRefPubMedPubMedCentral Li, W., J. Li, A.E. Sama, and H. Wang. 2013. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Molecular Medicine 19: 203–211.CrossRefPubMedPubMedCentral
44.
go back to reference Li, W., Ashok, M., Li, J., Yang, H., Sama, AE., and Wang, H., 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One e1153. Li, W., Ashok, M., Li, J., Yang, H., Sama, AE., and Wang, H., 2007. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PloS One e1153.
45.
go back to reference Li, W., J. Li, M. Ashok, R. Wu, D. Chen, L. Yang, H. Yang, K.J. Tracey, P. Wang, A.E. Sama, and H. Wang. 2007. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. The Journal of Immunology 178: 3856–3864.CrossRefPubMedPubMedCentral Li, W., J. Li, M. Ashok, R. Wu, D. Chen, L. Yang, H. Yang, K.J. Tracey, P. Wang, A.E. Sama, and H. Wang. 2007. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. The Journal of Immunology 178: 3856–3864.CrossRefPubMedPubMedCentral
46.
go back to reference Lau, C.H., C.M. Chan, Y.W. Chan, K.M. Lau, T.W. Lau, F.C. Lam, W.T. Law, C.T. Che, P.C. Leung, K.P. Fung, Y.Y. Ho, and C.B. Lau. 2007. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14: 778–784.CrossRefPubMed Lau, C.H., C.M. Chan, Y.W. Chan, K.M. Lau, T.W. Lau, F.C. Lam, W.T. Law, C.T. Che, P.C. Leung, K.P. Fung, Y.Y. Ho, and C.B. Lau. 2007. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14: 778–784.CrossRefPubMed
47.
go back to reference Mi, X.J., S.W. Chen, W.J. Wang, R. Wang, Y.J. Zhang, W.J. Li, and Y.L. Li. 2005. Anxiolytic-like effect of paeonol in mice. Pharmacology, Biochemistry and Behavior 81: 683–687.CrossRefPubMed Mi, X.J., S.W. Chen, W.J. Wang, R. Wang, Y.J. Zhang, W.J. Li, and Y.L. Li. 2005. Anxiolytic-like effect of paeonol in mice. Pharmacology, Biochemistry and Behavior 81: 683–687.CrossRefPubMed
48.
go back to reference Li, N., L.L. Fan, G.P. Sun, X.A. Wan, Z.G. Wang, Q. Wu, and H. Wang. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World Journal of Gastroenterology 16: 4483–4490.CrossRefPubMedPubMedCentral Li, N., L.L. Fan, G.P. Sun, X.A. Wan, Z.G. Wang, Q. Wu, and H. Wang. 2010. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World Journal of Gastroenterology 16: 4483–4490.CrossRefPubMedPubMedCentral
49.
go back to reference Kim, S.A., H.J. Lee, K.S. Ahn, H.J. Lee, E.O. Lee, K.S. Ahn, S.H. Choi, S.J. Jung, J.Y. Kim, N. Baek, and S.H. Kim. 2009. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin 32: 1142–1147.CrossRefPubMed Kim, S.A., H.J. Lee, K.S. Ahn, H.J. Lee, E.O. Lee, K.S. Ahn, S.H. Choi, S.J. Jung, J.Y. Kim, N. Baek, and S.H. Kim. 2009. Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin 32: 1142–1147.CrossRefPubMed
50.
go back to reference Chen, Y., F. Qiao, Y. Zhao, Y. Wang, and G. Liu. 2015. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology 8: 6683–6691.PubMedPubMedCentral Chen, Y., F. Qiao, Y. Zhao, Y. Wang, and G. Liu. 2015. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. International Journal of Clinical and Experimental Pathology 8: 6683–6691.PubMedPubMedCentral
51.
go back to reference Wu, T.Y., L. Liu, W. Zhang, Y. Zhang, Y.Z. Liu, X.L. Shen, H. Gong, Y.Y. Yang, X.Y. Bi, C.L. Jiang, and Y.X. Wang. 2015. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. Journal of Psychiatric Research 64: 99–106.CrossRefPubMed Wu, T.Y., L. Liu, W. Zhang, Y. Zhang, Y.Z. Liu, X.L. Shen, H. Gong, Y.Y. Yang, X.Y. Bi, C.L. Jiang, and Y.X. Wang. 2015. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. Journal of Psychiatric Research 64: 99–106.CrossRefPubMed
52.
go back to reference Antón, M., F. Alén, R. Gómez de Heras, A. Serrano, F.J. Pavón, J.C. Leza, B. García-Bueno, F. Rodríguez de Fonseca, and L. Orio. 2016. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol Doi. doi:10.1111/adb. Antón, M., F. Alén, R. Gómez de Heras, A. Serrano, F.J. Pavón, J.C. Leza, B. García-Bueno, F. Rodríguez de Fonseca, and L. Orio. 2016. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict Biol Doi. doi:10.​1111/​adb.
53.
go back to reference Sharma, S., Evans, A., and Hemers, E., 2016. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res. Sharma, S., Evans, A., and Hemers, E., 2016. Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1. Cell Tissue Res.
54.
go back to reference Ni, P., Y. Zhang, Y. Liu, X. Lin, X. Su, H. Lu, H. Shen, W. Xu, H. Xu, and Z. Su. 2015. HMGB1 silence could promote MCF-7 cell apoptosis and inhibit invasion and metastasis. International Journal of Clinical and Experimental Pathology 8: 15940–15946.PubMedPubMedCentral Ni, P., Y. Zhang, Y. Liu, X. Lin, X. Su, H. Lu, H. Shen, W. Xu, H. Xu, and Z. Su. 2015. HMGB1 silence could promote MCF-7 cell apoptosis and inhibit invasion and metastasis. International Journal of Clinical and Experimental Pathology 8: 15940–15946.PubMedPubMedCentral
Metadata
Title
Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells
Authors
Hang Lei
Quan Wen
Hui Li
Shaohui Du
Jing-jing Wu
Jing Chen
Haiyuan Huang
Dongfeng Chen
Yiwei Li
Saixia Zhang
Jianhong Zhou
Rudong Deng
Qinglin Yang
Publication date
01-06-2016
Publisher
Springer US
Published in
Inflammation / Issue 3/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0353-z

Other articles of this Issue 3/2016

Inflammation 3/2016 Go to the issue