Skip to main content
Top
Published in: Inflammation 1/2016

01-02-2016 | Original Article

The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury

Authors: Haibin Ling, Hongguang Chen, Miao Wei, Xiaoyin Meng, Yonghao Yu, Keliang Xie

Published in: Inflammation | Issue 1/2016

Login to get access

Abstract

Acute kidney injury (AKI) is characterized by a rapid loss of kidney function and an antigen-independent inflammatory process that causes tissue damage, which was one of the main manifestations of kidney ischemia/reperfusion (I/R). Recent studies have demonstrated autophagy participated in the pathological process of acute kidney injury. In this study, we discuss how autophagy regulated inflammation response in the kidney I/R. AKI was performed by renal I/R. Autophagy activator rapamycin (Rap) and inhibitor 3-methyladenine (MA) were used to investigate the role of autophagy on kidney function and inflammation response. After the experiment, kidney tissues were obtained for the detection of autophagy-related protein microtubule-associated protein light chain 3(LC3)II, Beclin1, and Rab7 and lysosome-associated membrane protein type (LAMP)2 protein by reverse transcription-polymerase chain reaction (PT-PCR) and Western blotting, and histopathology and tissue injury scores also. The blood was harvested to measure kidney function (creatinine (Cr) and blood urea nitrogen (BUN) levels) after I/R. Cytokines TNF-α, IL-6, HMGB1, and IL-10 were measured after I/R. I/R induced the expression of LC3II, Beclin1, LAMP2, and Rab7. The activation and inhibition of autophagy by rapamycin and 3-MA were promoted and attenuated histological and renal function in renal I/R rats, respectively. Cytokines TNF-α, IL-6, and HMGB1 were decreased, and IL-10 was further increased after activation of autophagy treated in I/R rats, while 3-MA exacerbated the pro-inflammatory cytokines TNF-α, IL-6, HMGB1, and anti-inflammatory cytokine IL-10 in renal I/R. I/R can activated the autophagy, and autophagy increase mitigated the renal injury by decreasing kidney injury score, levels of Cr and BUN after renal I/R, and inflammation response via regulating the balance of pro-inflammation and anti-inflammation cytokines.
Literature
1.
go back to reference Kunzendorf, U., M. Haase, L. Rolver, and A. Haase-Fielitz. 2010. Novel aspects of pharmacological therapies for acute renal failure. Drugs 70: 1099–1114.CrossRefPubMed Kunzendorf, U., M. Haase, L. Rolver, and A. Haase-Fielitz. 2010. Novel aspects of pharmacological therapies for acute renal failure. Drugs 70: 1099–1114.CrossRefPubMed
2.
go back to reference Mangano, C.M., L.S. Diamondstone, J.G. Ramsay, A. Aggarwal, A. Herskowitz, and D.T. Mangano. 1998. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Annals of Internal Medicine 128: 194–203.CrossRefPubMed Mangano, C.M., L.S. Diamondstone, J.G. Ramsay, A. Aggarwal, A. Herskowitz, and D.T. Mangano. 1998. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Annals of Internal Medicine 128: 194–203.CrossRefPubMed
3.
go back to reference Aydin, Z., A.J. van Zonneveld, J.W. de Fijter, and T.J. Rabelink. 2007. New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrology, Dialysis, Transplantation 22: 342–346.CrossRefPubMed Aydin, Z., A.J. van Zonneveld, J.W. de Fijter, and T.J. Rabelink. 2007. New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrology, Dialysis, Transplantation 22: 342–346.CrossRefPubMed
4.
go back to reference Chertow, G.M., E. Burdick, M. Honour, J.V. Bonventre, and D.W. Bates. 2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology 16: 3365–3370.CrossRefPubMed Chertow, G.M., E. Burdick, M. Honour, J.V. Bonventre, and D.W. Bates. 2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology 16: 3365–3370.CrossRefPubMed
5.
go back to reference Kazmers, A., L. Jacobs, and A. Perkins. 1997. The impact of complications after vascular surgery in Veterans Affairs Medical Centers. Journal of Surgical Research 67: 62–66.CrossRefPubMed Kazmers, A., L. Jacobs, and A. Perkins. 1997. The impact of complications after vascular surgery in Veterans Affairs Medical Centers. Journal of Surgical Research 67: 62–66.CrossRefPubMed
6.
go back to reference Levy, E.M., C.M. Viscoli, and R.I. Horwitz. 1996. The effect of acute renal failure on mortality. A cohort analysis. JAMA 275: 1489–1494.CrossRefPubMed Levy, E.M., C.M. Viscoli, and R.I. Horwitz. 1996. The effect of acute renal failure on mortality. A cohort analysis. JAMA 275: 1489–1494.CrossRefPubMed
7.
go back to reference Zhang, J., J.H. Li, L. Wang, M. Han, F. Xiao, X.Q. Lan, et al. 2014. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. Journal of Huazhong University of Science and Technology. Medical Sciences 34: 516–520.CrossRef Zhang, J., J.H. Li, L. Wang, M. Han, F. Xiao, X.Q. Lan, et al. 2014. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. Journal of Huazhong University of Science and Technology. Medical Sciences 34: 516–520.CrossRef
8.
go back to reference Schiffl, H., S.M. Lang, and R. Fischer. 2002. Daily hemodialysis and the outcome of acute renal failure. The New England Journal of Medicine 346: 305–310.CrossRefPubMed Schiffl, H., S.M. Lang, and R. Fischer. 2002. Daily hemodialysis and the outcome of acute renal failure. The New England Journal of Medicine 346: 305–310.CrossRefPubMed
9.
go back to reference Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.CrossRefPubMed Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion—from mechanism to translation. Nature Medicine 17: 1391–1401.CrossRefPubMed
10.
go back to reference Gabay, C., and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340: 448–454.CrossRefPubMed Gabay, C., and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine 340: 448–454.CrossRefPubMed
11.
go back to reference Grams, M.E., and H. Rabb. 2012. The distant organ effects of acute kidney injury. Kidney International 81: 942–948.CrossRefPubMed Grams, M.E., and H. Rabb. 2012. The distant organ effects of acute kidney injury. Kidney International 81: 942–948.CrossRefPubMed
12.
go back to reference Hotta, O., N. Yusa, M. Ooyama, K. Unno, T. Furuta, and Y. Taguma. 1999. Detection of urinary macrophages expressing the CD16 (Fc gamma RIII) molecule: a novel marker of acute inflammatory glomerular injury. Kidney International 55: 1927–1934.CrossRefPubMed Hotta, O., N. Yusa, M. Ooyama, K. Unno, T. Furuta, and Y. Taguma. 1999. Detection of urinary macrophages expressing the CD16 (Fc gamma RIII) molecule: a novel marker of acute inflammatory glomerular injury. Kidney International 55: 1927–1934.CrossRefPubMed
14.
go back to reference Lee, D.W., S. Faubel, and C.L. Edelstein. 2011. Cytokines in acute kidney injury (AKI). Clinical Nephrology 76: 165–173.CrossRefPubMed Lee, D.W., S. Faubel, and C.L. Edelstein. 2011. Cytokines in acute kidney injury (AKI). Clinical Nephrology 76: 165–173.CrossRefPubMed
15.
go back to reference Molitoris, B.A., and T.A. Sutton. 2004. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney International 66: 496–499.CrossRefPubMed Molitoris, B.A., and T.A. Sutton. 2004. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney International 66: 496–499.CrossRefPubMed
16.
go back to reference Umehara, H., S. Goda, T. Imai, Y. Nagano, Y. Minami, Y. Tanaka, et al. 2001. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunology and Cell Biology 79: 298–302.CrossRefPubMed Umehara, H., S. Goda, T. Imai, Y. Nagano, Y. Minami, Y. Tanaka, et al. 2001. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunology and Cell Biology 79: 298–302.CrossRefPubMed
17.
19.
20.
go back to reference Chien, C.T., S.K. Shyue, and M.K. Lai. 2007. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84: 1183–1190.CrossRefPubMed Chien, C.T., S.K. Shyue, and M.K. Lai. 2007. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84: 1183–1190.CrossRefPubMed
21.
go back to reference Wu, H.H., T.Y. Hsiao, C.T. Chien, and M.K. Lai. 2009. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. Journal of Biomedical Science 16: 19.PubMedCentralCrossRefPubMed Wu, H.H., T.Y. Hsiao, C.T. Chien, and M.K. Lai. 2009. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. Journal of Biomedical Science 16: 19.PubMedCentralCrossRefPubMed
22.
go back to reference Suzuki, C., Y. Isaka, Y. Takabatake, H. Tanaka, M. Koike, M. Shibata, et al. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochemical and Biophysical Research Communications 368: 100–106.CrossRefPubMed Suzuki, C., Y. Isaka, Y. Takabatake, H. Tanaka, M. Koike, M. Shibata, et al. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochemical and Biophysical Research Communications 368: 100–106.CrossRefPubMed
23.
go back to reference Jiang, M., K. Liu, J. Luo, and Z. Dong. 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. American Journal of Pathology 176: 1181–1192.PubMedCentralCrossRefPubMed Jiang, M., K. Liu, J. Luo, and Z. Dong. 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. American Journal of Pathology 176: 1181–1192.PubMedCentralCrossRefPubMed
24.
go back to reference Lo, S., S.S. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, et al. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257: 352–363.CrossRefPubMed Lo, S., S.S. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, et al. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257: 352–363.CrossRefPubMed
25.
go back to reference Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253: 1190–1200.CrossRefPubMed Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253: 1190–1200.CrossRefPubMed
26.
go back to reference Takahashi, W., E. Watanabe, L. Fujimura, H. Watanabe-Takano, H. Yoshidome, P.E. Swanson, et al. 2013. Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Critical Care 17: R160.PubMedCentralCrossRefPubMed Takahashi, W., E. Watanabe, L. Fujimura, H. Watanabe-Takano, H. Yoshidome, P.E. Swanson, et al. 2013. Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Critical Care 17: R160.PubMedCentralCrossRefPubMed
27.
go back to reference Chiang, C.K., M.L. Sheu, Y.W. Lin, C.T. Wu, C.C. Yang, M.W. Chen, et al. 2011. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. British Journal of Pharmacology 163: 586–597.PubMedCentralCrossRefPubMed Chiang, C.K., M.L. Sheu, Y.W. Lin, C.T. Wu, C.C. Yang, M.W. Chen, et al. 2011. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. British Journal of Pharmacology 163: 586–597.PubMedCentralCrossRefPubMed
28.
go back to reference Wu, C.T., M.L. Sheu, K.S. Tsai, C.K. Chiang, and S.H. Liu. 2011. Salubrinal, an eIF2alpha dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radical Biology and Medicine 51: 671–680.CrossRefPubMed Wu, C.T., M.L. Sheu, K.S. Tsai, C.K. Chiang, and S.H. Liu. 2011. Salubrinal, an eIF2alpha dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radical Biology and Medicine 51: 671–680.CrossRefPubMed
29.
go back to reference Wang, Z.H., W.Y. Ren, L. Zhu, and L.J. Hu. 2014. Plasminogen activator inhibitor-1 regulates LPS induced inflammation in rat macrophages through autophagy activation. ScientificWorldJournal 2014: 189168.PubMedCentralPubMed Wang, Z.H., W.Y. Ren, L. Zhu, and L.J. Hu. 2014. Plasminogen activator inhibitor-1 regulates LPS induced inflammation in rat macrophages through autophagy activation. ScientificWorldJournal 2014: 189168.PubMedCentralPubMed
30.
go back to reference Perico, N., D. Cattaneo, M.H. Sayegh, and G. Remuzzi. 2004. Delayed graft function in kidney transplantation. Lancet 364: 1814–1827.CrossRefPubMed Perico, N., D. Cattaneo, M.H. Sayegh, and G. Remuzzi. 2004. Delayed graft function in kidney transplantation. Lancet 364: 1814–1827.CrossRefPubMed
31.
32.
go back to reference Huber, T.B., C.L. Edelstein, B. Hartleben, K. Inoki, M. Jiang, D. Koya, et al. 2012. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8: 1009–1031.PubMedCentralCrossRefPubMed Huber, T.B., C.L. Edelstein, B. Hartleben, K. Inoki, M. Jiang, D. Koya, et al. 2012. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8: 1009–1031.PubMedCentralCrossRefPubMed
33.
go back to reference Linkermann, A., J.H. Brasen, N. Himmerkus, S. Liu, T.B. Huber, U. Kunzendorf, et al. 2012. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney International 81: 751–761.CrossRefPubMed Linkermann, A., J.H. Brasen, N. Himmerkus, S. Liu, T.B. Huber, U. Kunzendorf, et al. 2012. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney International 81: 751–761.CrossRefPubMed
34.
35.
go back to reference Hsieh, Y.C., M. Athar, and I.H. Chaudry. 2009. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends in Molecular Medicine 15: 129–138.PubMedCentralCrossRefPubMed Hsieh, Y.C., M. Athar, and I.H. Chaudry. 2009. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends in Molecular Medicine 15: 129–138.PubMedCentralCrossRefPubMed
36.
go back to reference Zhong, Y., Q.J. Wang, X. Li, Y. Yan, J.M. Backer, B.T. Chait, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology 11: 468–476.PubMedCentralCrossRefPubMed Zhong, Y., Q.J. Wang, X. Li, Y. Yan, J.M. Backer, B.T. Chait, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology 11: 468–476.PubMedCentralCrossRefPubMed
37.
38.
go back to reference Zhang, Y.L., Y.J. Cao, X. Zhang, H.H. Liu, T. Tong, G.D. Xiao, et al. 2010. The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochemical and Biophysical Research Communications 394: 377–382.CrossRefPubMed Zhang, Y.L., Y.J. Cao, X. Zhang, H.H. Liu, T. Tong, G.D. Xiao, et al. 2010. The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochemical and Biophysical Research Communications 394: 377–382.CrossRefPubMed
39.
go back to reference Gutierrez, M.G., D.B. Munafo, W. Beron, and M.I. Colombo. 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of Cell Science 117: 2687–2697.CrossRefPubMed Gutierrez, M.G., D.B. Munafo, W. Beron, and M.I. Colombo. 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of Cell Science 117: 2687–2697.CrossRefPubMed
40.
go back to reference Land, W.G. 2005. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation 79: 505–514.CrossRefPubMed Land, W.G. 2005. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation 79: 505–514.CrossRefPubMed
41.
go back to reference Serteser, M., T. Koken, A. Kahraman, K. Yilmaz, G. Akbulut, and O.N. Dilek. 2002. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. Journal of Surgical Research 107: 234–240.CrossRefPubMed Serteser, M., T. Koken, A. Kahraman, K. Yilmaz, G. Akbulut, and O.N. Dilek. 2002. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. Journal of Surgical Research 107: 234–240.CrossRefPubMed
42.
go back to reference Ysebaert, D.K., K.E. De Greef, S.R. Vercauteren, M. Ghielli, G.A. Verpooten, E.J. Eyskens, et al. 2000. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrology, Dialysis, Transplantation 15: 1562–1574.CrossRefPubMed Ysebaert, D.K., K.E. De Greef, S.R. Vercauteren, M. Ghielli, G.A. Verpooten, E.J. Eyskens, et al. 2000. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrology, Dialysis, Transplantation 15: 1562–1574.CrossRefPubMed
43.
go back to reference Facio, F.J., A.A. Sena, L.P. Araujo, G.E. Mendes, I. Castro, M.A. Luz, et al. 2011. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. Journal of Molecular Medicine (Berlin) 89: 51–63.CrossRef Facio, F.J., A.A. Sena, L.P. Araujo, G.E. Mendes, I. Castro, M.A. Luz, et al. 2011. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. Journal of Molecular Medicine (Berlin) 89: 51–63.CrossRef
44.
go back to reference Bolisetty, S., and A. Agarwal. 2009. Neutrophils in acute kidney injury: not neutral any more. Kidney International 75: 674–676.CrossRefPubMed Bolisetty, S., and A. Agarwal. 2009. Neutrophils in acute kidney injury: not neutral any more. Kidney International 75: 674–676.CrossRefPubMed
45.
go back to reference Jing, X.X., Z.G. Wang, H.T. Ran, L. Li, X. Wu, X.D. Li, et al. 2008. Evaluation of renal ischemia-reperfusion injury in rabbits using microbubbles targeted to activated neutrophils. Clinical Imaging 32: 178–182.CrossRefPubMed Jing, X.X., Z.G. Wang, H.T. Ran, L. Li, X. Wu, X.D. Li, et al. 2008. Evaluation of renal ischemia-reperfusion injury in rabbits using microbubbles targeted to activated neutrophils. Clinical Imaging 32: 178–182.CrossRefPubMed
46.
go back to reference Dessing, M.C., W.P. Pulskens, G.J. Teske, L.M. Butter, T. van der Poll, H. Yang, et al. 2012. RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury. Journal of Innate Immunity 4: 80–85.CrossRefPubMed Dessing, M.C., W.P. Pulskens, G.J. Teske, L.M. Butter, T. van der Poll, H. Yang, et al. 2012. RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury. Journal of Innate Immunity 4: 80–85.CrossRefPubMed
47.
go back to reference Xue, L., K. Xie, X. Han, Z. Yang, J. Qiu, Z. Zhao, et al. 2011. Detrimental functions of IL-17A in renal ischemia-reperfusion injury in mice. Journal of Surgical Research 171: 266–274.CrossRefPubMed Xue, L., K. Xie, X. Han, Z. Yang, J. Qiu, Z. Zhao, et al. 2011. Detrimental functions of IL-17A in renal ischemia-reperfusion injury in mice. Journal of Surgical Research 171: 266–274.CrossRefPubMed
48.
go back to reference Lin, M., L. Li, L. Li, G. Pokhrel, G. Qi, R. Rong, et al. 2014. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis. BMC Complementary and Alternative Medicine 14: 19.PubMedCentralCrossRefPubMed Lin, M., L. Li, L. Li, G. Pokhrel, G. Qi, R. Rong, et al. 2014. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis. BMC Complementary and Alternative Medicine 14: 19.PubMedCentralCrossRefPubMed
Metadata
Title
The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury
Authors
Haibin Ling
Hongguang Chen
Miao Wei
Xiaoyin Meng
Yonghao Yu
Keliang Xie
Publication date
01-02-2016
Publisher
Springer US
Published in
Inflammation / Issue 1/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0255-5

Other articles of this Issue 1/2016

Inflammation 1/2016 Go to the issue