Skip to main content
Top
Published in: Inflammation 5/2015

01-10-2015

Combined Vagal Stimulation and Limb Remote Ischemic Perconditioning Enhances Cardioprotection via an Anti-inflammatory Pathway

Authors: Qiang Wang, Gao-Pu Liu, Fu-Shan Xue, Shi-Yu Wang, Xin-Long Cui, Rui-Ping Li, Gui-Zhen Yang, Chao Sun, Xu Liao

Published in: Inflammation | Issue 5/2015

Login to get access

Abstract

Various combined interventions to acquire enhanced cardioprotection are prevalent focuses of current research. This randomized experiment assessed whether combined vagal stimulation perconditioning (VSPerC) and limb remote ischemic perconditioning (LRIPerC) improved cardioprotection compared to the use of either treatment alone in an in vivo rat model of myocardial ischemia/reperfusion injury. A total of 100 male Sprague Dawley rats were randomly allocated into five groups: sham group, ischemia/reperfusion (IR) group, VSPerC group, LRIPerC group, and combined VSPerC and LRIPerC (COMPerC) group. Serum enzymatic markers, inflammatory cytokines, myocardial inflammatory cytokines, and infarct size were assessed. Infarct size decreased significantly in the COMPerC group compared to the VSPerC and LRIPerC groups. Serum intercellular adhesion molecule 1 (ICAM-1) level at 120 min of reperfusion, myocardial interleukin-1 (IL-1), ICAM-1, and tumor necrosis factor α (TNF-α) levels in the ischemic region decreased significantly in the COMPerC group compared to the VSPerC group, but myocardial IL-10 levels in the nonischemic region increased markedly in the COMPerC group. Serum TNF-α levels at 30, 60, and 120 min of reperfusion; serum IL-1, IL-6, ICAM-1, and high mobility group box-1 protein (HMGB-1) levels at 120 min of reperfusion; and myocardial IL-1, IL-6, ICAM-1, and TNF-α levels in the ischemic region decreased significantly in the COMPerC group compared to the LRIPerC group. However, myocardial IL-10 levels in both ischemic and nonischemic regions were evidently higher in the COMPerC group. This study concludes that combined VSPerC and LRIPerC enhances cardioprotection compared to either treatment alone. This result is likely attributable to a more potent regulation of inflammation.
Literature
1.
go back to reference Yellon, D.M., and D.J. Hausenloy. 2007. Myocardial reperfusion injury. New England Journal of Medicine 357(11): 1121–1135.CrossRefPubMed Yellon, D.M., and D.J. Hausenloy. 2007. Myocardial reperfusion injury. New England Journal of Medicine 357(11): 1121–1135.CrossRefPubMed
2.
go back to reference Moscarelli M., G. Angelini, S. Suleiman, F. Fiorentino, and P. Punjabi. 2015. Remote ischaemic preconditioning: Is it a flag on the field? Perfusion. in press. Moscarelli M., G. Angelini, S. Suleiman, F. Fiorentino, and P. Punjabi. 2015. Remote ischaemic preconditioning: Is it a flag on the field? Perfusion. in press.
3.
go back to reference Murry, C.E., R.B. Jennings, and K.A. Reimer. 1986. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74(5): 1124–1136.CrossRefPubMed Murry, C.E., R.B. Jennings, and K.A. Reimer. 1986. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74(5): 1124–1136.CrossRefPubMed
4.
go back to reference Pac-Soo, C.K., H. Mathew, and D. Ma. 2015. Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. British Journal of Anaesthesia 114(2): 204–216.CrossRefPubMed Pac-Soo, C.K., H. Mathew, and D. Ma. 2015. Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. British Journal of Anaesthesia 114(2): 204–216.CrossRefPubMed
5.
go back to reference Andreadou, I., E.K. Iliodromitis, M. Koufaki, and D.T. Kremastinos. 2008. Pharmacological pre- and post-conditioning agents: Reperfusion-injury of the heart revisited. Mini Reviews in Medicinal Chemistry 8(9): 952–959.CrossRefPubMed Andreadou, I., E.K. Iliodromitis, M. Koufaki, and D.T. Kremastinos. 2008. Pharmacological pre- and post-conditioning agents: Reperfusion-injury of the heart revisited. Mini Reviews in Medicinal Chemistry 8(9): 952–959.CrossRefPubMed
6.
go back to reference Schmidt, M.R., M. Smerup, I.E. Konstantinov, et al. 2007. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. American Journal of Physiology - Heart and Circulatory Physiology 292(4): H1883–H1890.CrossRefPubMed Schmidt, M.R., M. Smerup, I.E. Konstantinov, et al. 2007. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. American Journal of Physiology - Heart and Circulatory Physiology 292(4): H1883–H1890.CrossRefPubMed
7.
go back to reference Li, C.M., X.H. Zhang, X.J. Ma, and M. Luo. 2006. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scandinavian Cardiovascular Journal 40(5): 312–317.CrossRefPubMed Li, C.M., X.H. Zhang, X.J. Ma, and M. Luo. 2006. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scandinavian Cardiovascular Journal 40(5): 312–317.CrossRefPubMed
8.
go back to reference Szijártó, A., Z. Czigány, Z. Turóczi, and L. Harsányi. 2012. Remote ischemic perconditioning—a simple, low-risk method to decrease ischemic reperfusion injury: Models, protocols and mechanistic background. A review. Journal of Surgical Research 178(2): 797–806.CrossRefPubMed Szijártó, A., Z. Czigány, Z. Turóczi, and L. Harsányi. 2012. Remote ischemic perconditioning—a simple, low-risk method to decrease ischemic reperfusion injury: Models, protocols and mechanistic background. A review. Journal of Surgical Research 178(2): 797–806.CrossRefPubMed
9.
go back to reference Bøtker, H.E., R. Kharbanda, M.R. Schmidt, M. Bøttcher, A.K. Kaltoft, C.J. Terkelsen, K. Munk, N.H. Andersen, T.M. Hansen, S. Trautner, J.F. Lassen, E.H. Christiansen, L.R. Krusell, S.D. Kristensen, L. Thuesen, S.S. Nielsen, M. Rehling, H.T. Sørensen, A.N. Redington, and T.T. Nielsen. 2010. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet 375(9716): 727–734.CrossRefPubMed Bøtker, H.E., R. Kharbanda, M.R. Schmidt, M. Bøttcher, A.K. Kaltoft, C.J. Terkelsen, K. Munk, N.H. Andersen, T.M. Hansen, S. Trautner, J.F. Lassen, E.H. Christiansen, L.R. Krusell, S.D. Kristensen, L. Thuesen, S.S. Nielsen, M. Rehling, H.T. Sørensen, A.N. Redington, and T.T. Nielsen. 2010. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet 375(9716): 727–734.CrossRefPubMed
10.
go back to reference Prunier, F., D. Angoulvant, C. Saint Etienne, E. Vermes, M. Gilard, C. Piot, F. Roubille, M. Elbaz, M. Ovize, L. Bière, J. Jeanneteau, S. Delépine, T. Benard, W. Abi-Khalil, and A. Furber. 2014. The RIPOST-MI study. Assessing remote ischemic preconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Research in Cardiology 109(2): 400.CrossRefPubMed Prunier, F., D. Angoulvant, C. Saint Etienne, E. Vermes, M. Gilard, C. Piot, F. Roubille, M. Elbaz, M. Ovize, L. Bière, J. Jeanneteau, S. Delépine, T. Benard, W. Abi-Khalil, and A. Furber. 2014. The RIPOST-MI study. Assessing remote ischemic preconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Research in Cardiology 109(2): 400.CrossRefPubMed
11.
go back to reference Mioni, C., C. Bazzani, D. Giuliani, D. Altavilla, S. Leone, A. Ferrari, L. Minutoli, A. Bitto, H. Marini, D. Zaffe, A.R. Botticelli, A. Iannone, A. Tomasi, A. Bigiani, A. Bertolini, F. Squadrito, and S. Guarini. 2005. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine 33(11): 2621–2628.CrossRefPubMed Mioni, C., C. Bazzani, D. Giuliani, D. Altavilla, S. Leone, A. Ferrari, L. Minutoli, A. Bitto, H. Marini, D. Zaffe, A.R. Botticelli, A. Iannone, A. Tomasi, A. Bigiani, A. Bertolini, F. Squadrito, and S. Guarini. 2005. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine 33(11): 2621–2628.CrossRefPubMed
12.
go back to reference Uemura, K., C. Zheng, M. Li, T. Kawada, and M. Sugimachi. 2010. Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure 16(8): 689–699.CrossRefPubMed Uemura, K., C. Zheng, M. Li, T. Kawada, and M. Sugimachi. 2010. Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure 16(8): 689–699.CrossRefPubMed
13.
go back to reference Wang, Q., Y. Cheng, F.S. Xue, Y.J. Yuan, J. Xiong, R.P. Li, X. Liao, and J.H. Liu. 2012. Postconditioning with vagal stimulation attenuates local and systemic inflammatory responses to myocardial ischemia reperfusion injury in rats. Inflammation Research 61(11): 1273–1282.CrossRefPubMed Wang, Q., Y. Cheng, F.S. Xue, Y.J. Yuan, J. Xiong, R.P. Li, X. Liao, and J.H. Liu. 2012. Postconditioning with vagal stimulation attenuates local and systemic inflammatory responses to myocardial ischemia reperfusion injury in rats. Inflammation Research 61(11): 1273–1282.CrossRefPubMed
14.
go back to reference Zhao, M., X. He, X.Y. Bi, X.J. Yu, W. Gil Wier, and W.J. Zang. 2013. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology 108(3): 345.CrossRefPubMed Zhao, M., X. He, X.Y. Bi, X.J. Yu, W. Gil Wier, and W.J. Zang. 2013. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology 108(3): 345.CrossRefPubMed
15.
go back to reference Li, S., Q. Wang, F.S. Xue, Y.J. Yuan, J. Xiong, X. Liao, and J. H. Liu. 2011. Effect of postconditioning with electrical stimulation of vagus never on myocardial ischemia reperfusion injury in rats (Chinese). International Journal of Anesthesiology and Resuscitation 32(1): 132–136. Li, S., Q. Wang, F.S. Xue, Y.J. Yuan, J. Xiong, X. Liao, and J. H. Liu. 2011. Effect of postconditioning with electrical stimulation of vagus never on myocardial ischemia reperfusion injury in rats (Chinese). International Journal of Anesthesiology and Resuscitation 32(1): 132–136.
16.
go back to reference Ottani, A., M. Galantucci, E. Ardimento, L. Neri, F. Canalini, A. Calevro, D. Zaffe, E. Novellino, P. Grieco, D. Giuliani, and S. Guarini. 2013. Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacological Research 72: 1–8.CrossRefPubMed Ottani, A., M. Galantucci, E. Ardimento, L. Neri, F. Canalini, A. Calevro, D. Zaffe, E. Novellino, P. Grieco, D. Giuliani, and S. Guarini. 2013. Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacological Research 72: 1–8.CrossRefPubMed
17.
go back to reference Tamareille, S., V. Mateus, N. Ghaboura, J. Jeanneteau, A. Croué, D. Henrion, A. Furber, and F. Prunier. 2011. RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning. Basic Research in Cardiology 106(6): 1329–1339.CrossRefPubMed Tamareille, S., V. Mateus, N. Ghaboura, J. Jeanneteau, A. Croué, D. Henrion, A. Furber, and F. Prunier. 2011. RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning. Basic Research in Cardiology 106(6): 1329–1339.CrossRefPubMed
18.
go back to reference Goodman, M.D., S.E. Koch, G.A. Fuller-Bicer, and K.L. Butler. 2008. Regulating RISK: A role for JAK-STAT signaling in postconditioning? American Journal of Physiology - Heart and Circulatory Physiology 295(4): H1649–H1656.PubMedCentralCrossRefPubMed Goodman, M.D., S.E. Koch, G.A. Fuller-Bicer, and K.L. Butler. 2008. Regulating RISK: A role for JAK-STAT signaling in postconditioning? American Journal of Physiology - Heart and Circulatory Physiology 295(4): H1649–H1656.PubMedCentralCrossRefPubMed
19.
go back to reference Zhang, J.Q., Q. Wang, F.S. Xue, R.P. Li, Y. Cheng, X.L. Cui, X. Liao, and F.M. Meng. 2013. Ischemic preconditioning produces more powerful anti-inflammatory and cardioprotective effects than limb remote ischemic postconditioning in rats with myocardial ischemia-reperfusion injury. Chinese Medical Journal 126(20): 3949–3955.PubMed Zhang, J.Q., Q. Wang, F.S. Xue, R.P. Li, Y. Cheng, X.L. Cui, X. Liao, and F.M. Meng. 2013. Ischemic preconditioning produces more powerful anti-inflammatory and cardioprotective effects than limb remote ischemic postconditioning in rats with myocardial ischemia-reperfusion injury. Chinese Medical Journal 126(20): 3949–3955.PubMed
20.
go back to reference Xiong, J., Q. Wang, F.S. Xue, Y.J. Yuan, S. Li, J.H. Liu, X. Liao, and Y.M. Zhang. 2011. Comparison of cardioprotective and anti-inflammatory effects of ischemia pre- and postconditioning in rats with myocardial ischemia-reperfusion injury. Inflammation Research 60(6): 547–554.CrossRefPubMed Xiong, J., Q. Wang, F.S. Xue, Y.J. Yuan, S. Li, J.H. Liu, X. Liao, and Y.M. Zhang. 2011. Comparison of cardioprotective and anti-inflammatory effects of ischemia pre- and postconditioning in rats with myocardial ischemia-reperfusion injury. Inflammation Research 60(6): 547–554.CrossRefPubMed
21.
go back to reference Ravingerová, T., D. Pancza, A. Ziegelholffer, and J. Styk. 2002. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: The role of α-adrenergic stimulation and K+ ATP channels. Physiological Research 51(2): 109–119.PubMed Ravingerová, T., D. Pancza, A. Ziegelholffer, and J. Styk. 2002. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: The role of α-adrenergic stimulation and K+ ATP channels. Physiological Research 51(2): 109–119.PubMed
22.
go back to reference Calvillo, L., E. Vanoli, E. Andreoli, A. Besana, E. Omodeo, M. Gnecchi, P. Zerbi, G. Vago, G. Busca, and P.J. Schwartz. 2011. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology 58(5): 500–507.CrossRefPubMed Calvillo, L., E. Vanoli, E. Andreoli, A. Besana, E. Omodeo, M. Gnecchi, P. Zerbi, G. Vago, G. Busca, and P.J. Schwartz. 2011. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology 58(5): 500–507.CrossRefPubMed
23.
go back to reference Steffens, S., F. Montecucco, and F. Mach. 2009. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thrombosis and Haemostasis 102(2): 240–247.PubMed Steffens, S., F. Montecucco, and F. Mach. 2009. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thrombosis and Haemostasis 102(2): 240–247.PubMed
24.
go back to reference Zhou, X., Y.C. Luo, W.J. Ji, L. Zhang, Y. Dong, L. Ge, R.Y. Lu, H.Y. Sun, Z.Z. Guo, G.H. Yang, T.M. Jiang, and Y.M. Li. 2013. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS ONE 8(9): e74390.PubMedCentralCrossRefPubMed Zhou, X., Y.C. Luo, W.J. Ji, L. Zhang, Y. Dong, L. Ge, R.Y. Lu, H.Y. Sun, Z.Z. Guo, G.H. Yang, T.M. Jiang, and Y.M. Li. 2013. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS ONE 8(9): e74390.PubMedCentralCrossRefPubMed
25.
go back to reference Xiong, J., F.S. Xue, Y.J. Yuan, Q. Wang, X. Liao, and W.L. Wang. 2010. Cholinergic anti-inflammatory pathway: A possible approach to protect against myocardial ischemia reperfusion injury. Chinese Medical Journal 123(19): 2720–2726.PubMed Xiong, J., F.S. Xue, Y.J. Yuan, Q. Wang, X. Liao, and W.L. Wang. 2010. Cholinergic anti-inflammatory pathway: A possible approach to protect against myocardial ischemia reperfusion injury. Chinese Medical Journal 123(19): 2720–2726.PubMed
26.
go back to reference Frangogiannis, N.G., C.W. Smith, and M.L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovascular Research 53(1): 31–47.CrossRefPubMed Frangogiannis, N.G., C.W. Smith, and M.L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovascular Research 53(1): 31–47.CrossRefPubMed
27.
go back to reference Johnston, G.R., and N.R. Webster. 2009. Cytokines and the immunomodulatory function of the vagus nerve. British Journal of Anaesthesia 102(4): 453–462.CrossRefPubMed Johnston, G.R., and N.R. Webster. 2009. Cytokines and the immunomodulatory function of the vagus nerve. British Journal of Anaesthesia 102(4): 453–462.CrossRefPubMed
28.
go back to reference Yamada, S., and I. Maruyama. 2007. HMGB1, a novel inflammatory cytokine. Clinica Chimica Acta 375(1–2): 36–42.CrossRef Yamada, S., and I. Maruyama. 2007. HMGB1, a novel inflammatory cytokine. Clinica Chimica Acta 375(1–2): 36–42.CrossRef
29.
go back to reference Metzler, B., J. Mair, A. Lercher, C. Schaber, F. Hintringer, O. Pachinger, and Q. Xu. 2001. Mouse model of myocardial remodelling after ischemia: Role of intercellular adhesion molecule-1. Cardiovascular Research 49(2): 399–407.CrossRefPubMed Metzler, B., J. Mair, A. Lercher, C. Schaber, F. Hintringer, O. Pachinger, and Q. Xu. 2001. Mouse model of myocardial remodelling after ischemia: Role of intercellular adhesion molecule-1. Cardiovascular Research 49(2): 399–407.CrossRefPubMed
30.
go back to reference Mioni, C., D. Giuliani, M.M. Cainazzo, S. Leone, C. Bazzani, P. Grieco, E. Novellino, A. Tomasi, A. Bertolini, and S. Guarini. 2003. Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. European Journal of Pharmacology 477(3): 227–234.CrossRefPubMed Mioni, C., D. Giuliani, M.M. Cainazzo, S. Leone, C. Bazzani, P. Grieco, E. Novellino, A. Tomasi, A. Bertolini, and S. Guarini. 2003. Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. European Journal of Pharmacology 477(3): 227–234.CrossRefPubMed
31.
go back to reference Giuliani, D., L. Minutoli, A. Ottani, L. Spaccapelo, A. Bitto, M. Galantucci, D. Altavilla, F. Squadrito, and S. Guarini. 2012. Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology 33(2): 179–193.CrossRefPubMed Giuliani, D., L. Minutoli, A. Ottani, L. Spaccapelo, A. Bitto, M. Galantucci, D. Altavilla, F. Squadrito, and S. Guarini. 2012. Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology 33(2): 179–193.CrossRefPubMed
32.
go back to reference Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421(6921): 384–388.CrossRefPubMed Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421(6921): 384–388.CrossRefPubMed
33.
go back to reference Meregnani, J., D. Clarençon, M. Vivier, A. Peinnequin, C. Mouret, V. Sinniger, C. Picq, A. Job, F. Canini, M. Jacquier-Sarlin, and B. Bonaz. 2011. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Autonomic Neuroscience 160(1–2): 82–89.CrossRefPubMed Meregnani, J., D. Clarençon, M. Vivier, A. Peinnequin, C. Mouret, V. Sinniger, C. Picq, A. Job, F. Canini, M. Jacquier-Sarlin, and B. Bonaz. 2011. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Autonomic Neuroscience 160(1–2): 82–89.CrossRefPubMed
34.
go back to reference Niederbichler, A.D., S. Papst, L. Claassen, A. Jokuszies, L. Steinstraesser, T. Hirsch, M.A. Altintas, K.R. Ipaktchi, K. Reimers, T. Kraft, and P.M. Vogt. 2009. Burn-induced organ dysfunction: Vagus nerve stimulation attenuates organ and serum cytokine levels. Burns 35(6): 783–789.CrossRefPubMed Niederbichler, A.D., S. Papst, L. Claassen, A. Jokuszies, L. Steinstraesser, T. Hirsch, M.A. Altintas, K.R. Ipaktchi, K. Reimers, T. Kraft, and P.M. Vogt. 2009. Burn-induced organ dysfunction: Vagus nerve stimulation attenuates organ and serum cytokine levels. Burns 35(6): 783–789.CrossRefPubMed
35.
go back to reference Markowski, P., O. Boehm, L. Goelz, A.L. Haesner, H. Ehrentraut, K. Bauerfeld, N. Tran, K. Zacharowski, C. Weisheit, P. Langhoff, M. Schwederski, T. Hilbert, S. Klaschik, A. Hoeft, G. Baumgarten, R. Meyer, and P. Knuefermann. 2013. Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Research in Cardiology 108(5): 376.PubMedCentralCrossRefPubMed Markowski, P., O. Boehm, L. Goelz, A.L. Haesner, H. Ehrentraut, K. Bauerfeld, N. Tran, K. Zacharowski, C. Weisheit, P. Langhoff, M. Schwederski, T. Hilbert, S. Klaschik, A. Hoeft, G. Baumgarten, R. Meyer, and P. Knuefermann. 2013. Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Research in Cardiology 108(5): 376.PubMedCentralCrossRefPubMed
36.
go back to reference Andreka, G., M. Vertesaljai, G. Szantho, G. Font, Z. Piroth, G. Fontos, E.D. Juhasz, L. Szekely, Z. Szelid, M.S. Turner, H. Ashrafian, M.P. Frenneaux, and P. Andreka. 2007. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart 93(6): 749–752.PubMedCentralCrossRefPubMed Andreka, G., M. Vertesaljai, G. Szantho, G. Font, Z. Piroth, G. Fontos, E.D. Juhasz, L. Szekely, Z. Szelid, M.S. Turner, H. Ashrafian, M.P. Frenneaux, and P. Andreka. 2007. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart 93(6): 749–752.PubMedCentralCrossRefPubMed
37.
go back to reference Loukogeorgakis, S.P., R. Williams, A.T. Panagiotidou, S.K. Kolvekar, A. Donald, T.J. Cole, D.M. Yellon, J.E. Deanfield, and R.J. MacAllister. 2007. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP-channel dependent mechanism. Circulation 116(12): 1386–1395.CrossRefPubMed Loukogeorgakis, S.P., R. Williams, A.T. Panagiotidou, S.K. Kolvekar, A. Donald, T.J. Cole, D.M. Yellon, J.E. Deanfield, and R.J. MacAllister. 2007. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP-channel dependent mechanism. Circulation 116(12): 1386–1395.CrossRefPubMed
38.
go back to reference Wang, Q., R.P. Li, F.S. Xue, S.Y. Wang, X.L. Cui, Y. Cheng, G.P. Liu, and X. Liao. 2014. Optimal intervention time of vagal stimulation attenuating myocardial ischemia/reperfusion injury in rats. Inflammation Research 63(12): 987–999.CrossRefPubMed Wang, Q., R.P. Li, F.S. Xue, S.Y. Wang, X.L. Cui, Y. Cheng, G.P. Liu, and X. Liao. 2014. Optimal intervention time of vagal stimulation attenuating myocardial ischemia/reperfusion injury in rats. Inflammation Research 63(12): 987–999.CrossRefPubMed
39.
go back to reference Brooks, M.J., and D.T. Andrews. 2013. Molecular mechanisms of ischemic conditioning: Translation into patient outcomes. Future Cardiology 9(4): 549–568.CrossRefPubMed Brooks, M.J., and D.T. Andrews. 2013. Molecular mechanisms of ischemic conditioning: Translation into patient outcomes. Future Cardiology 9(4): 549–568.CrossRefPubMed
Metadata
Title
Combined Vagal Stimulation and Limb Remote Ischemic Perconditioning Enhances Cardioprotection via an Anti-inflammatory Pathway
Authors
Qiang Wang
Gao-Pu Liu
Fu-Shan Xue
Shi-Yu Wang
Xin-Long Cui
Rui-Ping Li
Gui-Zhen Yang
Chao Sun
Xu Liao
Publication date
01-10-2015
Publisher
Springer US
Published in
Inflammation / Issue 5/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0152-y

Other articles of this Issue 5/2015

Inflammation 5/2015 Go to the issue