Skip to main content
Top
Published in: Inflammation 5/2015

01-10-2015

Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation

Authors: Huaibin Sun, Jun Tian, Wanhua Xian, Tingting Xie, Xiangdong Yang

Published in: Inflammation | Issue 5/2015

Login to get access

Abstract

As one of the most important long-term complications of diabetes, diabetic nephropathy (DN) is the major cause of end-stage renal disease and high mortality in diabetic patients. The long pentraxin 3 (Ptx3) is a member of a superfamily of conserved proteins characterized by a cyclic multimeric structure and a conserved C-terminal domain. Several clinical investigations have demonstrated that elevated plasma Ptx3 levels are associated with cardiovascular and chronic kidney diseases (CKD). However, the therapeutic effect of Ptx3 on DN has never been investigated. In our current study, we showed a crucial role for Ptx3 in attenuating renal damage in DN. In our mouse hyperglycemia-induced nephropathy model, Ptx3 treatment showed significantly increased expression of nephrin, acetylated nephrin, and Wilm’s tumor-1 protein (WT-1) when compared with control. The number of CD4+ T cells, CD8+ T cells, Ly6G+ neutrophils, and CD11b+ macrophages were all significantly lower in the Ptx3-treated group than that in the control group in DN. The IL-4 and IL-13 levels in the Ptx3-treated group were markedly higher than that in the control group in DN. Correspondingly, the Ptx3-treated group showed increased numbers of Arg1- or CD206-expressing macrophages compared with the control group. Furthermore, inhibition of Ptx3-treated macrophages abrogated the alleviated renal damage induced by Ptx3 treatment. In conclusion, Ptx3 attenuates renal damage in DN by promoting M2 macrophage differentiation.
Literature
1.
go back to reference Dronavalli, S., I. Duka, and G.L. Bakris. 2008. The pathogenesis of diabetic nephropathy. Nature Clinical Practice Endocrinology & Metabolism 4: 444–452.CrossRef Dronavalli, S., I. Duka, and G.L. Bakris. 2008. The pathogenesis of diabetic nephropathy. Nature Clinical Practice Endocrinology & Metabolism 4: 444–452.CrossRef
2.
go back to reference Alvarez, M.L., and J.K. Distefano. 2013. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Research and Clinical Practice 99: 1–11.CrossRefPubMed Alvarez, M.L., and J.K. Distefano. 2013. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Research and Clinical Practice 99: 1–11.CrossRefPubMed
3.
go back to reference Sun, Y.M., Y. Su, J. Li, and L.F. Wang. 2013. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochemical and Biophysical Research Communications 433: 359–361.CrossRefPubMed Sun, Y.M., Y. Su, J. Li, and L.F. Wang. 2013. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochemical and Biophysical Research Communications 433: 359–361.CrossRefPubMed
4.
go back to reference Bozza, S., F. Bistoni, R. Gaziano, L. Pitzurra, T. Zelante, P. Bonifazi, et al. 2006. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood 108: 3387–3396.CrossRefPubMed Bozza, S., F. Bistoni, R. Gaziano, L. Pitzurra, T. Zelante, P. Bonifazi, et al. 2006. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood 108: 3387–3396.CrossRefPubMed
5.
go back to reference Garlanda, C., B. Bottazzi, A. Bastone, and A. Mantovani. 2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology 23: 337–366.CrossRefPubMed Garlanda, C., B. Bottazzi, A. Bastone, and A. Mantovani. 2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology 23: 337–366.CrossRefPubMed
6.
go back to reference Cieslik, P., and A. Hrycek. 2012. Long pentraxin 3 (PTX3) in the light of its structure, mechanism of action and clinical implications. Autoimmunity 45: 119–128.CrossRefPubMed Cieslik, P., and A. Hrycek. 2012. Long pentraxin 3 (PTX3) in the light of its structure, mechanism of action and clinical implications. Autoimmunity 45: 119–128.CrossRefPubMed
7.
go back to reference Yamasaki, K., M. Kurimura, T. Kasai, M. Sagara, T. Kodama, and K. Inoue. 2009. Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations. Clinical Chemistry and Laboratory Medicine 47: 471–477.CrossRefPubMed Yamasaki, K., M. Kurimura, T. Kasai, M. Sagara, T. Kodama, and K. Inoue. 2009. Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations. Clinical Chemistry and Laboratory Medicine 47: 471–477.CrossRefPubMed
8.
go back to reference Dubin, R., Y. Li, J.H. Ix, M.G. Shlipak, M. Whooley, and C.A. Peralta. 2012. Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. American Heart Journal 163: 274–279.PubMedCentralCrossRefPubMed Dubin, R., Y. Li, J.H. Ix, M.G. Shlipak, M. Whooley, and C.A. Peralta. 2012. Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. American Heart Journal 163: 274–279.PubMedCentralCrossRefPubMed
9.
go back to reference Tong, M., J.J. Carrero, A.R. Qureshi, B. Anderstam, O. Heimburger, P. Barany, et al. 2007. Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clinical Journal of the American Society of Nephrology 2: 889–897.CrossRefPubMed Tong, M., J.J. Carrero, A.R. Qureshi, B. Anderstam, O. Heimburger, P. Barany, et al. 2007. Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clinical Journal of the American Society of Nephrology 2: 889–897.CrossRefPubMed
10.
go back to reference Suliman, M.E., M.I. Yilmaz, J.J. Carrero, A.R. Qureshi, M. Saglam, O.M. Ipcioglu, et al. 2008. Novel links between the long pentraxin 3, endothelial dysfunction, and albuminuria in early and advanced chronic kidney disease. Clinical Journal of the American Society of Nephrology 3: 976–985.PubMedCentralCrossRefPubMed Suliman, M.E., M.I. Yilmaz, J.J. Carrero, A.R. Qureshi, M. Saglam, O.M. Ipcioglu, et al. 2008. Novel links between the long pentraxin 3, endothelial dysfunction, and albuminuria in early and advanced chronic kidney disease. Clinical Journal of the American Society of Nephrology 3: 976–985.PubMedCentralCrossRefPubMed
11.
go back to reference Meuwese, C.L., J.J. Carrero, and P. Stenvinkel. 2011. Recent insights in inflammation-associated wasting in patients with chronic kidney disease. Contributions to Nephrology 171: 120–126.CrossRefPubMed Meuwese, C.L., J.J. Carrero, and P. Stenvinkel. 2011. Recent insights in inflammation-associated wasting in patients with chronic kidney disease. Contributions to Nephrology 171: 120–126.CrossRefPubMed
12.
go back to reference Daigo, K., M. Nakakido, R. Ohashi, R. Fukuda, K. Matsubara, T. Minami, et al. 2014. Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Science Signaling 7: a88.CrossRef Daigo, K., M. Nakakido, R. Ohashi, R. Fukuda, K. Matsubara, T. Minami, et al. 2014. Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Science Signaling 7: a88.CrossRef
13.
go back to reference Miyamoto, T., Q.A. Rashid, O. Heimburger, P. Barany, K. Carrero, B. Sjoberg, et al. 2011. Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clinical Journal of the American Society of Nephrology 6: 2785–2791.PubMedCentralCrossRefPubMed Miyamoto, T., Q.A. Rashid, O. Heimburger, P. Barany, K. Carrero, B. Sjoberg, et al. 2011. Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clinical Journal of the American Society of Nephrology 6: 2785–2791.PubMedCentralCrossRefPubMed
14.
go back to reference Osorio-Conles, O., M. Guitart, M.R. Chacon, E. Maymo-Masip, J.M. Moreno-Navarrete, M. Montori-Grau, et al. 2011. Plasma PTX3 protein levels inversely correlate with insulin secretion and obesity, whereas visceral adipose tissue PTX3 gene expression is increased in obesity. American Journal of Physiology Endocrinology and Metabolism 301: E1254–E1261.CrossRefPubMed Osorio-Conles, O., M. Guitart, M.R. Chacon, E. Maymo-Masip, J.M. Moreno-Navarrete, M. Montori-Grau, et al. 2011. Plasma PTX3 protein levels inversely correlate with insulin secretion and obesity, whereas visceral adipose tissue PTX3 gene expression is increased in obesity. American Journal of Physiology Endocrinology and Metabolism 301: E1254–E1261.CrossRefPubMed
15.
go back to reference Abu, S.N., A. Witasp, M.W. Wan, B. Anderstam, K. Brismar, P. Stenvinkel, et al. 2013. Evaluation of the association of plasma pentraxin 3 levels with type 2 diabetes and diabetic nephropathy in a Malay population. Journal of Diabetes Research 2013: 298019. Abu, S.N., A. Witasp, M.W. Wan, B. Anderstam, K. Brismar, P. Stenvinkel, et al. 2013. Evaluation of the association of plasma pentraxin 3 levels with type 2 diabetes and diabetic nephropathy in a Malay population. Journal of Diabetes Research 2013: 298019.
16.
go back to reference Pichaiwong, W., K.L. Hudkins, T. Wietecha, T.Q. Nguyen, C. Tachaudomdach, W. Li, et al. 2013. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. Journal of the American Society of Nephrology 24: 1088–1102.PubMedCentralCrossRefPubMed Pichaiwong, W., K.L. Hudkins, T. Wietecha, T.Q. Nguyen, C. Tachaudomdach, W. Li, et al. 2013. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. Journal of the American Society of Nephrology 24: 1088–1102.PubMedCentralCrossRefPubMed
17.
go back to reference Yuen, D.A., B.E. Stead, Y. Zhang, K.E. White, M.G. Kabir, K. Thai, et al. 2012. eNOS deficiency predisposes podocytes to injury in diabetes. Journal of the American Society of Nephrology 23: 1810–1823.PubMedCentralCrossRefPubMed Yuen, D.A., B.E. Stead, Y. Zhang, K.E. White, M.G. Kabir, K. Thai, et al. 2012. eNOS deficiency predisposes podocytes to injury in diabetes. Journal of the American Society of Nephrology 23: 1810–1823.PubMedCentralCrossRefPubMed
18.
go back to reference Inoki, K., H. Mori, J. Wang, T. Suzuki, S. Hong, S. Yoshida, et al. 2011. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. The Journal of Clinical Investigation 121: 2181–2196.PubMedCentralCrossRefPubMed Inoki, K., H. Mori, J. Wang, T. Suzuki, S. Hong, S. Yoshida, et al. 2011. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. The Journal of Clinical Investigation 121: 2181–2196.PubMedCentralCrossRefPubMed
19.
go back to reference George, B., R. Verma, A.A. Soofi, P. Garg, J. Zhang, T.J. Park, et al. 2012. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. The Journal of Clinical Investigation 122: 674–692.PubMedCentralCrossRefPubMed George, B., R. Verma, A.A. Soofi, P. Garg, J. Zhang, T.J. Park, et al. 2012. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. The Journal of Clinical Investigation 122: 674–692.PubMedCentralCrossRefPubMed
20.
go back to reference Kajiho, Y., Y. Harita, H. Kurihara, S. Horita, A. Matsunaga, H. Tsurumi, et al. 2012. SIRPalpha interacts with nephrin at the podocyte slit diaphragm. The FEBS Journal 279: 3010–3021.CrossRefPubMed Kajiho, Y., Y. Harita, H. Kurihara, S. Horita, A. Matsunaga, H. Tsurumi, et al. 2012. SIRPalpha interacts with nephrin at the podocyte slit diaphragm. The FEBS Journal 279: 3010–3021.CrossRefPubMed
21.
go back to reference Lin, C.L., P.H. Lee, Y.C. Hsu, C.C. Lei, J.Y. Ko, P.C. Chuang, et al. 2014. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. Journal of the American Society of Nephrology 25: 1698–1709.PubMedCentralCrossRefPubMed Lin, C.L., P.H. Lee, Y.C. Hsu, C.C. Lei, J.Y. Ko, P.C. Chuang, et al. 2014. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. Journal of the American Society of Nephrology 25: 1698–1709.PubMedCentralCrossRefPubMed
22.
go back to reference Wilson, H.M., D. Walbaum, and A.J. Rees. 2004. Macrophages and the kidney. Current Opinion in Nephrology and Hypertension 13: 285–290.CrossRefPubMed Wilson, H.M., D. Walbaum, and A.J. Rees. 2004. Macrophages and the kidney. Current Opinion in Nephrology and Hypertension 13: 285–290.CrossRefPubMed
23.
go back to reference Eardley, K.S., D. Zehnder, M. Quinkler, J. Lepenies, R.L. Bates, C.O. Savage, et al. 2006. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney International 69: 1189–1197.CrossRefPubMed Eardley, K.S., D. Zehnder, M. Quinkler, J. Lepenies, R.L. Bates, C.O. Savage, et al. 2006. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney International 69: 1189–1197.CrossRefPubMed
24.
go back to reference Ogawa, D., K. Shikata, M. Matsuda, S. Okada, J. Wada, S. Yamaguchi, et al. 2002. Preventive effect of sulphated colominic acid on P-selectin-dependent infiltration of macrophages in experimentally induced crescentic glomerulonephritis. Clinical and Experimental Immunology 129: 43–53.PubMedCentralCrossRefPubMed Ogawa, D., K. Shikata, M. Matsuda, S. Okada, J. Wada, S. Yamaguchi, et al. 2002. Preventive effect of sulphated colominic acid on P-selectin-dependent infiltration of macrophages in experimentally induced crescentic glomerulonephritis. Clinical and Experimental Immunology 129: 43–53.PubMedCentralCrossRefPubMed
25.
go back to reference Wang, Y., Y.P. Wang, G. Zheng, V.W. Lee, L. Ouyang, D.H. Chang, et al. 2007. Ex vivo programmed macrophages ameliorates experimental chronic inflammatory renal disease. Kidney International 72: 290–299.CrossRefPubMed Wang, Y., Y.P. Wang, G. Zheng, V.W. Lee, L. Ouyang, D.H. Chang, et al. 2007. Ex vivo programmed macrophages ameliorates experimental chronic inflammatory renal disease. Kidney International 72: 290–299.CrossRefPubMed
26.
go back to reference Cao, Q., C. Wang, D. Zheng, Y. Wang, V.W. Lee, Y.M. Wang, et al. 2011. IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. Journal of the American Society of Nephrology 22: 1229–1239.PubMedCentralCrossRefPubMed Cao, Q., C. Wang, D. Zheng, Y. Wang, V.W. Lee, Y.M. Wang, et al. 2011. IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. Journal of the American Society of Nephrology 22: 1229–1239.PubMedCentralCrossRefPubMed
27.
go back to reference Ricardo, S.D., H. van Goor, and A.A. Eddy. 2008. Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation 118: 3522–3530.PubMedCentralCrossRefPubMed Ricardo, S.D., H. van Goor, and A.A. Eddy. 2008. Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation 118: 3522–3530.PubMedCentralCrossRefPubMed
28.
go back to reference Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.CrossRefPubMed Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.CrossRefPubMed
30.
go back to reference Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed
31.
go back to reference Zhang, M.Z., B. Yao, S. Yang, L. Jiang, S. Wang, X. Fan, et al. 2012. CSF-1 signaling mediates recovery from acute kidney injury. The Journal of Clinical Investigation 122: 4519–4532.PubMedCentralCrossRefPubMed Zhang, M.Z., B. Yao, S. Yang, L. Jiang, S. Wang, X. Fan, et al. 2012. CSF-1 signaling mediates recovery from acute kidney injury. The Journal of Clinical Investigation 122: 4519–4532.PubMedCentralCrossRefPubMed
32.
go back to reference Takeda, Y., S. Costa, E. Delamarre, C. Roncal, D.O.R. Leite, M.L. Squadrito, et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479: 122–126.CrossRefPubMed Takeda, Y., S. Costa, E. Delamarre, C. Roncal, D.O.R. Leite, M.L. Squadrito, et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479: 122–126.CrossRefPubMed
33.
go back to reference Lee, S., S. Huen, H. Nishio, S. Nishio, H.K. Lee, B.S. Choi, et al. 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology 22: 317–326.PubMedCentralCrossRefPubMed Lee, S., S. Huen, H. Nishio, S. Nishio, H.K. Lee, B.S. Choi, et al. 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology 22: 317–326.PubMedCentralCrossRefPubMed
Metadata
Title
Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation
Authors
Huaibin Sun
Jun Tian
Wanhua Xian
Tingting Xie
Xiangdong Yang
Publication date
01-10-2015
Publisher
Springer US
Published in
Inflammation / Issue 5/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0151-z

Other articles of this Issue 5/2015

Inflammation 5/2015 Go to the issue